Cardiac allograft vasculopathy screening: Difference between revisions
Line 7: | Line 7: | ||
==Screening== | ==Screening== | ||
The 2010 International Society of Heart and Lung Transplant Guidelines for the care of heart transplant recipients recommend annual invasive [[coronary angiography]] as the screening tool of choice for CAV.<ref name="pmid20643330">{{cite journal| author=Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S et al.| title=The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. | journal=J Heart Lung Transplant | year= 2010 | volume= 29 | issue= 8 | pages= 914-56 | pmid=20643330 | doi=10.1016/j.healun.2010.05.034 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20643330 }} </ref> In most centers screening of graft coronary arteries for signs of CAV is usually performed six weeks after [[cardiac transplantation]] and then annually thereafter. In a retrospective study by Haddad et al it was reported that angiographic evidence of CAV increases by approximately 10% with every 2-year period after cardiac transplantation.<ref name="pmid16143236">{{cite journal| author=Haddad M, Pflugfelder PW, Guiraudon C, Novick RJ, McKenzie FN, Menkis A et al.| title=Angiographic, pathologic, and clinical relationships in coronary artery disease in cardiac allografts. | journal=J Heart Lung Transplant | year= 2005 | volume= 24 | issue= 9 | pages= 1218-25 | pmid=16143236 | doi=10.1016/j.healun.2004.08.016 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16143236 }} </ref> The principal advantages of coronary angiography are its wide acceptability, low cost compared with other novel imaging techniques, and ease of performance.<ref name="pmid20620917">{{cite journal| author=Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA et al.| title=International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. | journal=J Heart Lung Transplant | year= 2010 | volume= 29 | issue= 7 | pages= 717-27 | pmid=20620917 | doi=10.1016/j.healun.2010.05.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20620917 }} </ref> | The 2010 International Society of Heart and Lung Transplant Guidelines for the care of heart transplant recipients recommend annual invasive [[coronary angiography]] as the screening tool of choice for CAV.<ref name="pmid20643330">{{cite journal| author=Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S et al.| title=The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. | journal=J Heart Lung Transplant | year= 2010 | volume= 29 | issue= 8 | pages= 914-56 | pmid=20643330 | doi=10.1016/j.healun.2010.05.034 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20643330 }} </ref> In most centers screening of graft coronary arteries for signs of CAV is usually performed six weeks after [[cardiac transplantation]] and then annually thereafter. In a retrospective study by Haddad et al it was reported that angiographic evidence of CAV increases by approximately 10% with every 2-year period after cardiac transplantation.<ref name="pmid16143236">{{cite journal| author=Haddad M, Pflugfelder PW, Guiraudon C, Novick RJ, McKenzie FN, Menkis A et al.| title=Angiographic, pathologic, and clinical relationships in coronary artery disease in cardiac allografts. | journal=J Heart Lung Transplant | year= 2005 | volume= 24 | issue= 9 | pages= 1218-25 | pmid=16143236 | doi=10.1016/j.healun.2004.08.016 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16143236 }} </ref> The principal advantages of coronary angiography are its wide acceptability, low cost compared with other novel imaging techniques, and ease of performance.<ref name="pmid20620917">{{cite journal| author=Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA et al.| title=International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010. | journal=J Heart Lung Transplant | year= 2010 | volume= 29 | issue= 7 | pages= 717-27 | pmid=20620917 | doi=10.1016/j.healun.2010.05.017 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20620917 }} </ref> Studies have shown that coronary angiography is 80% sensitive and 96% specific in detecting CAV.<ref name="pmid12973108">{{cite journal| author=Sharples LD, Jackson CH, Parameshwar J, Wallwork J, Large SR| title=Diagnostic accuracy of coronary angiography and risk factors for post-heart-transplant cardiac allograft vasculopathy. | journal=Transplantation | year= 2003 | volume= 76 | issue= 4 | pages= 679-82 | pmid=12973108 | doi=10.1097/01.TP.0000071200.37399.1D | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12973108 }} </ref><ref name="pmid16962473">{{cite journal| author=Störk S, Behr TM, Birk M, Uberfuhr P, Klauss V, Spes CH et al.| title=Assessment of cardiac allograft vasculopathy late after heart transplantation: when is coronary angiography necessary? | journal=J Heart Lung Transplant | year= 2006 | volume= 25 | issue= 9 | pages= 1103-8 | pmid=16962473 | doi=10.1016/j.healun.2006.05.009 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=16962473 }} </ref> | ||
Although coronary angiography is the preferred screening modality in many centers it lacks sensitivity in detecting early-CAV associated arterial wall changes. In early CAV due to positive arterial remodeling coronary vascular lumen is relatively preserved until negative remodeling occurs resulting in narrowing of the arterial lumen. This positive remodeling is not detected by coronary angiography leading to an under-estimation of the extent of CAV. Novel intracoronary imaging techniques such as [[intravascular ultrasound]] and [[optical coherence tomography]] have shown promising results in detecting these early-CAV associated coronary arterial wall changes. | Although coronary angiography is the preferred screening modality in many centers it lacks sensitivity in detecting early-CAV associated arterial wall changes. In early CAV due to positive arterial remodeling coronary vascular lumen is relatively preserved until negative remodeling occurs resulting in narrowing of the arterial lumen. This positive remodeling is not detected by coronary angiography leading to an under-estimation of the extent of CAV. Novel intracoronary imaging techniques such as [[intravascular ultrasound]] and [[optical coherence tomography]] have shown promising results in detecting these early-CAV associated coronary arterial wall changes. |
Revision as of 18:14, 27 July 2014
Cardiac allograft vasculopathy Microchapters |
Differentiating Cardiac allograft vasculopathy from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Cardiac allograft vasculopathy screening On the Web |
American Roentgen Ray Society Images of Cardiac allograft vasculopathy screening |
Directions to Hospitals Treating Cardiac allograft vasculopathy |
Risk calculators and risk factors for Cardiac allograft vasculopathy screening |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aarti Narayan, M.B.B.S [2] Raviteja Guddeti, M.B.B.S. [3]
Overview
Cardiac allograft vasculopathy (CAV) is the leading cause of morbidity and mortality beyond the first year in heart transplant recipients. In most cardiac transplant centers coronary angiography currently remains the screening tool of choice for CAV. Early diagnosis is important as it may allow for alterations in medical therapy before the disease progresses to the stage where revascularization is required.
Screening
The 2010 International Society of Heart and Lung Transplant Guidelines for the care of heart transplant recipients recommend annual invasive coronary angiography as the screening tool of choice for CAV.[1] In most centers screening of graft coronary arteries for signs of CAV is usually performed six weeks after cardiac transplantation and then annually thereafter. In a retrospective study by Haddad et al it was reported that angiographic evidence of CAV increases by approximately 10% with every 2-year period after cardiac transplantation.[2] The principal advantages of coronary angiography are its wide acceptability, low cost compared with other novel imaging techniques, and ease of performance.[3] Studies have shown that coronary angiography is 80% sensitive and 96% specific in detecting CAV.[4][5]
Although coronary angiography is the preferred screening modality in many centers it lacks sensitivity in detecting early-CAV associated arterial wall changes. In early CAV due to positive arterial remodeling coronary vascular lumen is relatively preserved until negative remodeling occurs resulting in narrowing of the arterial lumen. This positive remodeling is not detected by coronary angiography leading to an under-estimation of the extent of CAV. Novel intracoronary imaging techniques such as intravascular ultrasound and optical coherence tomography have shown promising results in detecting these early-CAV associated coronary arterial wall changes.
References
- ↑ Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S; et al. (2010). "The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients". J Heart Lung Transplant. 29 (8): 914–56. doi:10.1016/j.healun.2010.05.034. PMID 20643330.
- ↑ Haddad M, Pflugfelder PW, Guiraudon C, Novick RJ, McKenzie FN, Menkis A; et al. (2005). "Angiographic, pathologic, and clinical relationships in coronary artery disease in cardiac allografts". J Heart Lung Transplant. 24 (9): 1218–25. doi:10.1016/j.healun.2004.08.016. PMID 16143236.
- ↑ Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA; et al. (2010). "International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010". J Heart Lung Transplant. 29 (7): 717–27. doi:10.1016/j.healun.2010.05.017. PMID 20620917.
- ↑ Sharples LD, Jackson CH, Parameshwar J, Wallwork J, Large SR (2003). "Diagnostic accuracy of coronary angiography and risk factors for post-heart-transplant cardiac allograft vasculopathy". Transplantation. 76 (4): 679–82. doi:10.1097/01.TP.0000071200.37399.1D. PMID 12973108.
- ↑ Störk S, Behr TM, Birk M, Uberfuhr P, Klauss V, Spes CH; et al. (2006). "Assessment of cardiac allograft vasculopathy late after heart transplantation: when is coronary angiography necessary?". J Heart Lung Transplant. 25 (9): 1103–8. doi:10.1016/j.healun.2006.05.009. PMID 16962473.