Cardiac allograft vasculopathy coronary angiography: Difference between revisions
Line 8: | Line 8: | ||
==Coronary Angiography== | ==Coronary Angiography== | ||
Previously, the diagnosis of CAV was made pathologically. However, with the advent of calcineurin-based immunosuppression post-cardiac transplant survival improved significantly and angiographic diagnosis became a standard. Currently, the International Society for Heart and Lung Transplantation (ISHLT) recommends annual invasive coronary angiography as the standard imaging technique to screen for CAV.<ref name="pmid20643330">{{cite journal| author=Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S et al.| title=The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. | journal=J Heart Lung Transplant | year= 2010 | volume= 29 | issue= 8 | pages= 914-56 | pmid=20643330 | doi=10.1016/j.healun.2010.05.034 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20643330 }} </ref> Angiographic evidence of coronary artery disease is very common after [[heart transplantation]]. In a multiinstitutional study by Constanzo et al it was demonstrated that by the end of 5 years after transplantation 42% of heart transplant subjects had angiographic evidence of graft coronary artery disease.<ref name="pmid9730422">{{cite journal| author=Costanzo MR, Naftel DC, Pritzker MR, Heilman JK, Boehmer JP, Brozena SC et al.| title=Heart transplant coronary artery disease detected by coronary angiography: a multiinstitutional study of preoperative donor and recipient risk factors. Cardiac Transplant Research Database. | journal=J Heart Lung Transplant | year= 1998 | volume= 17 | issue= 8 | pages= 744-53 | pmid=9730422 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9730422 }} </ref> | Previously, the diagnosis of CAV was made pathologically. However, with the advent of calcineurin-based immunosuppression post-cardiac transplant survival improved significantly and angiographic diagnosis became a standard. Currently, the International Society for Heart and Lung Transplantation (ISHLT) recommends annual invasive coronary angiography as the standard imaging technique to screen for CAV.<ref name="pmid20643330">{{cite journal| author=Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S et al.| title=The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. | journal=J Heart Lung Transplant | year= 2010 | volume= 29 | issue= 8 | pages= 914-56 | pmid=20643330 | doi=10.1016/j.healun.2010.05.034 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20643330 }} </ref> Angiographic evidence of coronary artery disease is very common after [[heart transplantation]]. In a multiinstitutional study by Constanzo et al it was demonstrated that by the end of 5 years after transplantation 42% of heart transplant subjects had angiographic evidence of graft coronary artery disease.<ref name="pmid9730422">{{cite journal| author=Costanzo MR, Naftel DC, Pritzker MR, Heilman JK, Boehmer JP, Brozena SC et al.| title=Heart transplant coronary artery disease detected by coronary angiography: a multiinstitutional study of preoperative donor and recipient risk factors. Cardiac Transplant Research Database. | journal=J Heart Lung Transplant | year= 1998 | volume= 17 | issue= 8 | pages= 744-53 | pmid=9730422 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=9730422 }} </ref> | ||
The International Society for Heart and Lung Transplantation (ISHLT) recommended nomenclature for CAV: | |||
{| style="border: 0px; font-size: 90%; margin: 0 18px;" | |||
! style="width: 50px; background: #4479BA; text-align: center;"| {{fontcolor|#FFF|Classification}} | |||
! style="width: 50px; background: #4479BA; text-align: center;"| {{fontcolor|#FFF|Severity}} | |||
! style="width: 250px; background: #4479BA; text-align: center;"| {{fontcolor|#FFF|Definition}} | |||
|- | |||
| style="background: #F5F5F5; padding: 5px; text-align: center;"| '''ISHLT CAV0''' | |||
| style="background: #DCDCDC; padding: 5px; text-align: center;"| Not significant | |||
| style="width: 250px; background: #F5F5F5; padding: 5px;"| No detectable angiographic lesions | |||
|- | |||
| style="background: #F5F5F5; padding: 5px; text-align: center;"| '''ISHLT CAV1''' | |||
| style="background: #DCDCDC; padding: 5px; text-align: center;"| Mild | |||
| style="width: 250px; background: #F5F5F5; padding: 5px;"| Angiographic left main 50%, or primary vessel with maximum lesion of 70%, or any branch stenosis of 70% (including diffuse narrowing) without allograft dysfunction | |||
|- | |||
| style="background: #F5F5F5; padding: 5px; text-align: center;"| '''ISHLT CAV2''' | |||
| style="background: #DCDCDC; padding: 5px; text-align: center;"| Moderate | |||
| style="width: 250px; background: #F5F5F5; padding: 5px;"| Angiographic left main 50%; a single primary vessel 70%, or isolated branch stenosis of 70% in branches of 2 systems, without allograft dysfunction | |||
|- | |||
| style="background: #F5F5F5; padding: 5px; text-align: center;"| '''ISHLT CAV3''' | |||
| style="background: #DCDCDC; padding: 5px; text-align: center;"| Severe | |||
| style="width: 250px; background: #F5F5F5; padding: 5px;"| Angiographic LM 50%, or 2 or more primary vessels 70% stenosis, or isolated branch stenosis 70% in all 3 systems; or ISHLT CAV1 or CAV2 with allograft dysfunction (defined as LVEF >45%, usually in the presence of regional wall motion abnormalities) or evidence of significant restrictive physiology | |||
|} | |||
===Advantages=== | ===Advantages=== |
Revision as of 20:02, 4 August 2014
Cardiac allograft vasculopathy Microchapters |
Differentiating Cardiac allograft vasculopathy from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Cardiac allograft vasculopathy coronary angiography On the Web |
American Roentgen Ray Society Images of Cardiac allograft vasculopathy coronary angiography |
Cardiac allograft vasculopathy coronary angiography in the news |
Blogs on Cardiac allograft vasculopathy coronary angiography |
Directions to Hospitals Treating Cardiac allograft vasculopathy |
Risk calculators and risk factors for Cardiac allograft vasculopathy coronary angiography |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aarti Narayan, M.B.B.S [2]; Raviteja Guddeti, M.B.B.S. [3]
Overview
Early diagnosis of cardiac allograft vasculopathy (CAV) is of utmost importance as it allows alterations to optimal immunosuppression and risk factor modification prolonging graft survival and reducing morbidity and mortality. In most transplant centers coronary angiography is currently used to screen and diagnose transplant associated coronary artery disease.
Coronary Angiography
Previously, the diagnosis of CAV was made pathologically. However, with the advent of calcineurin-based immunosuppression post-cardiac transplant survival improved significantly and angiographic diagnosis became a standard. Currently, the International Society for Heart and Lung Transplantation (ISHLT) recommends annual invasive coronary angiography as the standard imaging technique to screen for CAV.[1] Angiographic evidence of coronary artery disease is very common after heart transplantation. In a multiinstitutional study by Constanzo et al it was demonstrated that by the end of 5 years after transplantation 42% of heart transplant subjects had angiographic evidence of graft coronary artery disease.[2]
The International Society for Heart and Lung Transplantation (ISHLT) recommended nomenclature for CAV:
Classification | Severity | Definition |
---|---|---|
ISHLT CAV0 | Not significant | No detectable angiographic lesions |
ISHLT CAV1 | Mild | Angiographic left main 50%, or primary vessel with maximum lesion of 70%, or any branch stenosis of 70% (including diffuse narrowing) without allograft dysfunction |
ISHLT CAV2 | Moderate | Angiographic left main 50%; a single primary vessel 70%, or isolated branch stenosis of 70% in branches of 2 systems, without allograft dysfunction |
ISHLT CAV3 | Severe | Angiographic LM 50%, or 2 or more primary vessels 70% stenosis, or isolated branch stenosis 70% in all 3 systems; or ISHLT CAV1 or CAV2 with allograft dysfunction (defined as LVEF >45%, usually in the presence of regional wall motion abnormalities) or evidence of significant restrictive physiology |
Advantages
- Wide acceptability[3]
- Reduced healthcare cost compared with other novel intracoronary imaging techniques
- Ease of performance
Limitations
- Lower sensitivity compared with histopathological studies, intravascular ultrasound (IVUS) and optical coherence tomography (OCT), especially in detecting early-stage CAV[4][5][6][7]
- Risk of contrast nephropathy in heart transplant subjects in whom chronic renal failure is a usual comorbidity[8]
References
- ↑ Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S; et al. (2010). "The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients". J Heart Lung Transplant. 29 (8): 914–56. doi:10.1016/j.healun.2010.05.034. PMID 20643330.
- ↑ Costanzo MR, Naftel DC, Pritzker MR, Heilman JK, Boehmer JP, Brozena SC; et al. (1998). "Heart transplant coronary artery disease detected by coronary angiography: a multiinstitutional study of preoperative donor and recipient risk factors. Cardiac Transplant Research Database". J Heart Lung Transplant. 17 (8): 744–53. PMID 9730422.
- ↑ Mehra MR, Crespo-Leiro MG, Dipchand A, Ensminger SM, Hiemann NE, Kobashigawa JA; et al. (2010). "International Society for Heart and Lung Transplantation working formulation of a standardized nomenclature for cardiac allograft vasculopathy-2010". J Heart Lung Transplant. 29 (7): 717–27. doi:10.1016/j.healun.2010.05.017. PMID 20620917.
- ↑ Nissen S (2001). "Coronary angiography and intravascular ultrasound". Am J Cardiol. 87 (4A): 15A–20A. PMID 11243599.
- ↑ St Goar FG, Pinto FJ, Alderman EL, Valantine HA, Schroeder JS, Gao SZ; et al. (1992). "Intracoronary ultrasound in cardiac transplant recipients. In vivo evidence of "angiographically silent" intimal thickening". Circulation. 85 (3): 979–87. PMID 1537134.
- ↑ Spes CH, Klauss V, Rieber J, Schnaack SD, Tammen AR, Uberfuhr P; et al. (1999). "Functional and morphological findings in heart transplant recipients with a normal coronary angiogram: an analysis by dobutamine stress echocardiography, intracoronary Doppler and intravascular ultrasound". J Heart Lung Transplant. 18 (5): 391–8. PMID 10363681.
- ↑ Tuzcu EM, Kapadia SR, Sachar R, Ziada KM, Crowe TD, Feng J; et al. (2005). "Intravascular ultrasound evidence of angiographically silent progression in coronary atherosclerosis predicts long-term morbidity and mortality after cardiac transplantation". J Am Coll Cardiol. 45 (9): 1538–42. doi:10.1016/j.jacc.2004.12.076. PMID 15862431.
- ↑ Lindelöw B, Bergh CH, Herlitz H, Waagstein F (2000). "Predictors and evolution of renal function during 9 years following heart transplantation". J Am Soc Nephrol. 11 (5): 951–7. PMID 10770975.