Tuberculosis laboratory findings: Difference between revisions
Line 19: | Line 19: | ||
A positive culture for M. tuberculosis confirms the diagnosis of TB disease. Culture examinations should be completed on all specimens, regardless of AFB smear results. Laboratories should report positive results on smears and cultures within 24 hours by telephone or fax to the primary health care provider and to the state or local TB control program, as required by law. | A positive culture for M. tuberculosis confirms the diagnosis of TB disease. Culture examinations should be completed on all specimens, regardless of AFB smear results. Laboratories should report positive results on smears and cultures within 24 hours by telephone or fax to the primary health care provider and to the state or local TB control program, as required by law. | ||
[[Image:TB_Culture.JPG|left|thumb|Distinctive clusters of colorless ''[[Mycobacterium tuberculosis]]'' | [[Image:TB_Culture.JPG|left|thumb|Culture: Distinctive clusters of colorless ''[[Mycobacterium tuberculosis]]'' ]] | ||
Many types of cultures are available <ref name="pmid12614730">{{cite journal |author=Drobniewski F, Caws M, Gibson A, Young D |title=Modern laboratory diagnosis of tuberculosis |journal=Lancet Infect Dis |volume=3 |issue=3 |pages=141-7 |year=2003 |id=PMID 12614730}}</REF>. Traditionally, cultures have used the Löwenstein-Jensen (LJ), Kirchner, or Middlebrook media (7H9, 7H10, and 7H11). A culture of the AFB can distinguish the various forms of mycobacteria, although results from this may take four to eight weeks for a conclusive answer. New automated systems that are faster include the MB/BacT, BACTEC 9000, and the Mycobacterial Growth Indicator Tube (MGIT). The MODS culture may be a faster and more accurate method <REF NAME="pmid17035648">{{cite journal |author=Moore D, Evans C, Gilman R, Caviedes L, Coronel J, Vivar A, Sanchez E, Piñedo Y, Saravia J, Salazar C, Oberhelman R, Hollm-Delgado M, LaChira D, Escombe A, Friedland J |title=Microscopic-observation drug-susceptibility assay for the diagnosis of TB |journal=N Engl J Med |volume=355 |issue=15 |pages=1539-50 |year=2006 |id=PMID 17035648}}</REF>. | Many types of cultures are available <ref name="pmid12614730">{{cite journal |author=Drobniewski F, Caws M, Gibson A, Young D |title=Modern laboratory diagnosis of tuberculosis |journal=Lancet Infect Dis |volume=3 |issue=3 |pages=141-7 |year=2003 |id=PMID 12614730}}</REF>. Traditionally, cultures have used the Löwenstein-Jensen (LJ), Kirchner, or Middlebrook media (7H9, 7H10, and 7H11). A culture of the AFB can distinguish the various forms of mycobacteria, although results from this may take four to eight weeks for a conclusive answer. New automated systems that are faster include the MB/BacT, BACTEC 9000, and the Mycobacterial Growth Indicator Tube (MGIT). The MODS culture may be a faster and more accurate method <REF NAME="pmid17035648">{{cite journal |author=Moore D, Evans C, Gilman R, Caviedes L, Coronel J, Vivar A, Sanchez E, Piñedo Y, Saravia J, Salazar C, Oberhelman R, Hollm-Delgado M, LaChira D, Escombe A, Friedland J |title=Microscopic-observation drug-susceptibility assay for the diagnosis of TB |journal=N Engl J Med |volume=355 |issue=15 |pages=1539-50 |year=2006 |id=PMID 17035648}}</REF>. |
Revision as of 17:48, 4 September 2014
Tuberculosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Tuberculosis laboratory findings On the Web |
American Roentgen Ray Society Images of Tuberculosis laboratory findings |
Risk calculators and risk factors for Tuberculosis laboratory findings |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Alejandro Lemor, M.D. [2]
Overview
Laboratory Findings
Sputum smears and cultures should be done for acid-fast bacilli if the patient is producing sputum. The preferred method for this is fluorescence microscopy (auramine-rhodamine staining), which is more sensitive than conventional Ziehl-Neelsen staining.[1]
If no sputum is being produced, specimens can be obtained by inducing sputum, gastric washings, a laryngeal swab, bronchoscopy with bronchoalveolar lavage, or fine needle aspiration of a collection. A comparative study found that inducing three sputum samples is more sensitive than three gastric washings.[2]
Other mycobacteria are also acid-fast. If the smear is positive, PCR or gene probe tests can distinguish M. tuberculosis from other mycobacteria. Even if sputum smear is negative, tuberculosis must be considered and is only excluded after negative cultures.
Acid-Fast Bacili on Sputum Smear
The presence of acid-fast-bacilli (AFB) on a sputum smear or other specimen often indicates TB disease. Acid-fast microscopy is easy and quick, but it does not confirm a diagnosis of TB because some acid-fast-bacilli are not M. tuberculosis. Therefore, a culture is done on all initial samples to confirm the diagnosis.
Culture
A positive culture for M. tuberculosis confirms the diagnosis of TB disease. Culture examinations should be completed on all specimens, regardless of AFB smear results. Laboratories should report positive results on smears and cultures within 24 hours by telephone or fax to the primary health care provider and to the state or local TB control program, as required by law.
Many types of cultures are available [3]. Traditionally, cultures have used the Löwenstein-Jensen (LJ), Kirchner, or Middlebrook media (7H9, 7H10, and 7H11). A culture of the AFB can distinguish the various forms of mycobacteria, although results from this may take four to eight weeks for a conclusive answer. New automated systems that are faster include the MB/BacT, BACTEC 9000, and the Mycobacterial Growth Indicator Tube (MGIT). The MODS culture may be a faster and more accurate method [4].
A sample of pleural exudate can be analyzed by cytopathology or at a cell count lab. Samples are usually lymphocyte predominant, and cytopathology is more accurate than cell count labs at detecting lymphs. If there is more fluid present, then an AFB lab is more appropriate. A pleural exudate lab test may find sterile pyuria (especially in HIV positive patients), but overall this finding is fairly uncommon. Most extra-pulmonary TB is pauci-bacillary, so the yield of tests is very low. A negative results does not exclude a tuberculosis infection.
Drug Resistance
For all patients, the initial M. tuberculosis isolate should be tested for drug resistance. It is crucial to identify drug resistance as early as possible to ensure effective treatment. Drug susceptibility patterns should be repeated for patients who do not respond adequately to treatment or who have positive culture results despite 3 months of therapy. Susceptibility results from laboratories should be promptly reported to the primary health care provider and the state or local TB control program.
References
- ↑ Steingart K, Henry M, Ng V; et al. (2006). "Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review". Lancet Infect Dis. 6 (9): 570&ndash, 81. doi:10.1016/S1473-3099(06)70578-3.
- ↑ Brown M, Varia H, Bassett P, Davidson RN, Wall R, Pasvol G (2007). "Prospective study of sputum induction, gastric washing, and bronchoalveolar lavage for the diagnosis of pulmonary tuberculosis in patients who are unable to expectorate". Clin Infect Dis. 44 (11): 1415–20. doi:10.1086/516782. PMID 17479935.
- ↑ Drobniewski F, Caws M, Gibson A, Young D (2003). "Modern laboratory diagnosis of tuberculosis". Lancet Infect Dis. 3 (3): 141–7. PMID 12614730.
- ↑ Moore D, Evans C, Gilman R, Caviedes L, Coronel J, Vivar A, Sanchez E, Piñedo Y, Saravia J, Salazar C, Oberhelman R, Hollm-Delgado M, LaChira D, Escombe A, Friedland J (2006). "Microscopic-observation drug-susceptibility assay for the diagnosis of TB". N Engl J Med. 355 (15): 1539–50. PMID 17035648.