Influenza cost-effectiveness of therapy: Difference between revisions

Jump to navigation Jump to search
Line 41: Line 41:


===Chemoprophylaxis===
===Chemoprophylaxis===
<!---
In randomized, placebo-controlled trials, both oseltamivir and zanamivir were efficacious in the prevention of influenza illness among persons administered chemoprophylaxis after a household member or other close contact had laboratory-confirmed influenza (zanamivir: 72%--82%; oseltamivir: 68%--89%) [13, 14, 17, 18, 141, 178, 179]. Postexposure chemoprophylaxis with neuraminidase inhibitors generally should be reserved for those who have had recent close contact with a person with influenza. Persons who can be considered for antiviral chemoprophylaxis include family or other close contacts of a person with a suspected or confirmed case who are at higher risk for influenza complications but have not been vaccinated against the influenza virus strains circulating at the time of exposure [28, 105]. Unvaccinated health-care workers who have occupational exposures and who did not use adequate personal protective equipment at the time of exposure are also potential candidates for chemoprophylaxis [28]. Because of widespread resistance among currently circulating influenza A virus strains and inherent nonsusceptibility among influenza B viruses, adamantanes have limited use in the prevention of influenza. Persons who receive an antiviral medication for chemoprophylaxis might still acquire influenza virus infection and be potentially able to transmit influenza virus, even if clinical illness is prevented [180, 181]. Development of illness caused by oseltamivir resistant 2009 H1N1 virus infection has been reported among persons receiving oseltamivir chemoprophylaxis [115], and one report of a small community cluster indicates that person-to-person transmission is possible among healthy persons who are not receiving oseltamivir [112].
In randomized, placebo-controlled trials, both oseltamivir and zanamivir were efficacious in the prevention of influenza illness among persons administered chemoprophylaxis after a household member or other close contact had laboratory-confirmed influenza (zanamivir: 72%--82%; oseltamivir: 68%--89%) [13, 14, 17, 18, 141, 178, 179]. Postexposure chemoprophylaxis with neuraminidase inhibitors generally should be reserved for those who have had recent close contact with a person with influenza. Persons who can be considered for antiviral chemoprophylaxis include family or other close contacts of a person with a suspected or confirmed case who are at higher risk for influenza complications but have not been vaccinated against the influenza virus strains circulating at the time of exposure [28, 105]. Unvaccinated health-care workers who have occupational exposures and who did not use adequate personal protective equipment at the time of exposure are also potential candidates for chemoprophylaxis [28]. Because of widespread resistance among currently circulating influenza A virus strains and inherent nonsusceptibility among influenza B viruses, adamantanes have limited use in the prevention of influenza. Persons who receive an antiviral medication for chemoprophylaxis might still acquire influenza virus infection and be potentially able to transmit influenza virus, even if clinical illness is prevented [180, 181]. Development of illness caused by oseltamivir resistant 2009 H1N1 virus infection has been reported among persons receiving oseltamivir chemoprophylaxis [115], and one report of a small community cluster indicates that person-to-person transmission is possible among healthy persons who are not receiving oseltamivir [112].
--->


==References==
==References==

Revision as of 17:42, 29 October 2014

Influenza Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Influenza from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Influenza cost-effectiveness of therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Influenza cost-effectiveness of therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Influenza cost-effectiveness of therapy

CDC on Influenza cost-effectiveness of therapy

Influenza cost-effectiveness of therapy in the news

Blogs on Influenza cost-effectiveness of therapy

Directions to Hospitals Treating Influenza

Risk calculators and risk factors for Influenza cost-effectiveness of therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Cost-Effectiveness of Therapy

Influenza produces direct costs due to lost productivity and associated medical treatment, as well as indirect costs of preventative measures. In the United States, influenza is responsible for a total cost of over $10 billion per year, while it has been estimated that a future pandemic could cause hundreds of billions of dollars in direct and indirect costs. However, the economic impact of past pandemics have not been intensively studied, and some authors have suggested that the Spanish influenza actually had a positive long-term effect on per-capita income growth, despite a large reduction in the working population and severe short-term depressive effects.[1] Other studies have attempted to predict the costs of a pandemic as serious as the 1918 Spanish flu on the U.S. economy, where 30% of all workers became ill, and 2.5% were killed. A 30% sickness rate and a three-week length of illness would decrease gross domestic product by 5%. Additional costs would come from medical treatment of 18 million to 45 million people, and total economic costs would be approximately $700 billion.[2]

Antiviral Drugs

  • Randomized, controlled trials conducted primarily among persons with mild illness in outpatient settings have demonstrated that zanamivir or oseltamivir can reduce the duration of uncomplicated influenza A and B illness by approximately 1 day when administered within 48 hours of illness onset compared with placebo[3][4][5][6]
  • One randomized, controlled trial of oseltamivir treatment among 408 children aged 1--3 years reported that when oseltamivir was started within 24 hours of illness onset, the median time to illness resolution was shortened by 3.5 days compared with placebo.
  • Minimal or no benefit was reported in healthy children and adults when antiviral treatment was initiated more than 2 days after onset of uncomplicated influenza.
  • The amount of influenza viral shedding was reduced among those treated, but studies on whether the duration of viral shedding is reduced have been inconsistent [7][8][9][10][11] and the temporal and causal relationships between changes in influenza viral shedding and clinical outcomes have not been well-established.

Vaccination

Chemoprophylaxis

References

  1. Brainerd, E. and M. Siegler (2003), “The Economic Effects of the 1918 Influenza Epidemic”, CEPR Discussion Paper, no. 3791.
  2. Poland G (2006). "Vaccines against avian influenza—a race against time". N Engl J Med. 354 (13): 1411–3. PMID 16571885.
  3. Hayden FG, Osterhaus AD, Treanor JJ, Fleming DM, Aoki FY, Nicholson KG; et al. (1997). "Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenzavirus infections. GG167 Influenza Study Group". N Engl J Med. 337 (13): 874–80. doi:10.1056/NEJM199709253371302. PMID 9302301.
  4. Monto AS, Fleming DM, Henry D, de Groot R, Makela M, Klein T; et al. (1999). "Efficacy and safety of the neuraminidase inhibitor zanamivirin the treatment of influenza A and B virus infections". J Infect Dis. 180 (2): 254–61. doi:10.1086/314904. PMID 10395837.
  5. Nicholson KG, Aoki FY, Osterhaus AD, Trottier S, Carewicz O, Mercier CH; et al. (2000). "Efficacy and safety of oseltamivir in treatment of acute influenza: a randomised controlled trial. Neuraminidase Inhibitor Flu Treatment Investigator Group". Lancet. 355 (9218): 1845–50. PMID 10866439.
  6. Whitley RJ, Hayden FG, Reisinger KS, Young N, Dutkowski R, Ipe D; et al. (2001). "Oral oseltamivir treatment of influenza in children". Pediatr Infect Dis J. 20 (2): 127–33. PMID 11224828.
  7. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S; et al. (2008). "Time lines of infection and disease in human influenza: a review of volunteer challenge studies". Am J Epidemiol. 167 (7): 775–85. doi:10.1093/aje/kwm375. PMID 18230677.
  8. Cowling BJ, Chan KH, Fang VJ, Lau LL, So HC, Fung RO; et al. (2010). "Comparative epidemiology of pandemic and seasonal influenza A in households". N Engl J Med. 362 (23): 2175–84. doi:10.1056/NEJMoa0911530. PMC 4070281. PMID 20558368.
  9. Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE (1998). "Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense". J Clin Invest. 101 (3): 643–9. doi:10.1172/JCI1355. PMC 508608. PMID 9449698.
  10. Hayden FG, Treanor JJ, Fritz RS, Lobo M, Betts RF, Miller M; et al. (1999). "Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment". JAMA. 282 (13): 1240–6. PMID 10517426.
  11. Sato M, Hosoya M, Kato K, Suzuki H (2005). "Viral shedding in children with influenza virus infections treated with neuraminidase inhibitors". Pediatr Infect Dis J. 24 (10): 931–2. PMID 16220098.

Template:WH Template:WS