Bromocriptine: Difference between revisions

Jump to navigation Jump to search
Vignesh Ponnusamy (talk | contribs)
No edit summary
Vignesh Ponnusamy (talk | contribs)
No edit summary
Line 352: Line 352:
|drugInteractions=
|drugInteractions=


* Drug
*The risk of using bromocriptine mesylate in combination with other drugs has not been systematically evaluated, but alcohol may potentiate the side effects of bromocriptine mesylate. Bromocriptine mesylate may interact with dopamine antagonists, butyrophenones, and certain other agents. Compounds in these categories result in a decreased efficacy of bromocriptine mesylate: phenothiazines, haloperidol, metoclopramide, pimozide. Bromocriptine is a substrate of CYP3A4. Caution should therefore be used when co-administering drugs which are strong inhibitors of this enzyme (such as azole antimycotics, HIV protease inhibitors). The concomitant use of macrolide antibiotics such as erythromycin was shown to increase the plasma levels of bromocriptine (mean AUC and Cmax values increased 3.7-fold and 4.6-fold, respectively). 1The concomitant treatment of acromegalic patients with bromocriptine and octreotide led to increased plasma levels of bromocriptine (bromocriptine AUC increased about 38%). 4Concomitant use of bromocriptine mesylate with other ergot alkaloids is not recommended. Dose adjustment may be necessary in those cases where high doses of bromocriptine are being used (such as Parkinson’s disease indication).
:* Description


<!--Use in Specific Populations-->
<!--Use in Specific Populations-->


|useInPregnancyFDA=
|useInPregnancyFDA=
* '''Pregnancy Category'''
* '''Pregnancy Category B'''
 
*Administration of 10-30 mg/kg of bromocriptine to 2 strains of rats on days 6-15 postcoitum (p.c.) as well as a single dose of 10 mg/kg on day 5 p.c. interfered with nidation.
 
*Three mg/kg given on days 6-15 were without effect on nidation, and did not produce any anomalies. In animals treated from day 8-15 p.c., i.e., after implantation, 30 mg/kg produced increased prenatal mortality in the form of increased incidence of embryonic resorption. One anomaly, aplasia of spinal vertebrae and ribs, was found in the group of 262 fetuses derived from the dams treated with 30 mg/kg bromocriptine. No fetotoxic effects were found in offspring of dams treated during the peri- or postnatal period.
 
*Two studies were conducted in rabbits (2 strains) to determine the potential to interfere with nidation. Dose levels of 100 or 300 mg/kg/day from day 1 to day 6 p.c. did not adversely affect nidation. The high dose was approximately 63 times the maximum human dose administered in controlled clinical trials (100 mg/day), based on body surface area. In New Zealand white rabbits, some embryo mortality occurred at 300 mg/kg which was a reflection of overt maternal toxicity. Three studies were conducted in 2 strains of rabbits to determine the teratological potential of bromocriptine at dose levels of 3, 10, 30, 100, and 300 mg/kg given from day 6 to day 18 p.c. In 2 studies with the Yellow-silver strain, cleft palate was found in 3 and 2 fetuses at maternally toxic doses of 100 and 300 mg/kg, respectively. One control fetus also exhibited this anomaly. In the third study conducted with New Zealand white rabbits using an identical protocol, no cleft palates were produced.
 
*No teratological or embryotoxic effects of bromocriptine were produced in any of 6 offspring from 6 monkeys at a dose level of 2 mg/kg.
 
*Information concerning 1276 pregnancies in women taking bromocriptine mesylate has been collected. In the majority of cases, bromocriptine mesylate was discontinued within 8 weeks into pregnancy (mean 28.7 days), however, 8 patients received the drug continuously throughout pregnancy. The mean daily dose for all patients was 5.8 mg (range 1-40 mg).
 
*Of these 1276 pregnancies, there were 1088 full-term deliveries (4 stillborn), 145 spontaneous abortions (11.4%), and 28 induced abortions (2.2%). Moreover, 12 extrauterine gravidities and 3 hydatidiform moles (twice in the same patient) caused early termination of pregnancy. These data compare favorably with the abortion rate (11%-25%) cited for pregnancies induced by clomiphene citrate, menopausal gonadotropin, and chorionic gonadotropin.
 
*Although spontaneous abortions often go unreported, especially prior to 20 weeks of gestation, their frequency has been estimated to be 15%.
 
*The incidence of birth defects in the population at large ranges from 2%-4.5%. The incidence in 1109 live births from patients receiving bromocriptine is 3.3%.
 
*There is no suggestion that bromocriptine mesylate contributed to the type or incidence of birth defects in this group of infants.


|useInPregnancyAUS=
|useInPregnancyAUS=
Line 369: Line 386:


|useInNursing=
|useInNursing=
There is no FDA guidance on the use of {{PAGENAME}} with respect to nursing mothers.
 
*Bromocriptine mesylate should not be used during lactation in postpartum women.


|useInPed=
|useInPed=
There is no FDA guidance on the use of {{PAGENAME}} with respect to pediatric patients.
 
*The safety and effectiveness of bromocriptine for the treatment of prolactin-secreting pituitary adenomas have been established in patients age 16 to adult. No data are available for bromocriptine use in pediatric patients under the age of 8 years. A single 8-year-old patient treated with bromocriptine for a prolactin-secreting pituitary macroadenoma has been reported without therapeutic response.
 
*The use of bromocriptine for the treatment of prolactin-secreting adenomas in pediatric patients in the age group 11 to under 16 years is supported by evidence from well-controlled trials in adults, with additional data in a limited number (n=14) of children and adolescents 11 to 15 years of age with prolactin-secreting pituitary macro- and microadenomas who have been treated with bromocriptine. Of the 14 reported patients, 9 had successful outcomes, 3 partial responses, and 2 failed to respond to bromocriptine treatment. Chronic hypopituitarism complicated macroadenoma treatment in 5 of the responders, both in patients receiving bromocriptine alone and in those who received bromocriptine in combination with surgical treatment and/or pituitary irradiation.
 
*Safety and effectiveness of bromocriptine in pediatric patients have not been established for any other indication listed in the INDICATIONS AND USAGE section.
 


|useInGeri=
|useInGeri=
Line 468: Line 492:


*Bromocriptine mesylate produces its therapeutic effect in the treatment of Parkinson’s disease, a clinical condition characterized by a progressive deficiency in dopamine synthesis in the substantia nigra, by directly stimulating the dopamine receptors in the corpus striatum. In contrast, levodopa exerts its therapeutic effect only after conversion to dopamine by the neurons of the substantia nigra, which are known to be numerically diminished in this patient population.
*Bromocriptine mesylate produces its therapeutic effect in the treatment of Parkinson’s disease, a clinical condition characterized by a progressive deficiency in dopamine synthesis in the substantia nigra, by directly stimulating the dopamine receptors in the corpus striatum. In contrast, levodopa exerts its therapeutic effect only after conversion to dopamine by the neurons of the substantia nigra, which are known to be numerically diminished in this patient population.


<!--Pharmacokinetics-->
<!--Pharmacokinetics-->
Line 503: Line 526:
|nonClinToxic=
|nonClinToxic=


There is limited information regarding <i>Nonclinical Toxicology</i> of {{PAGENAME}} in the drug label.
*A 74-week study was conducted in mice using dietary levels of bromocriptine mesylate equivalent to oral doses of 10 and 50 mg/kg/day. A 100-week study in rats was conducted using dietary levels equivalent to oral doses of 1.7, 9.8, and 44 mg/kg/day. The highest doses tested in mice and rats were approximately 2.5 and 4.4 times, respectively, the maximum human dose administered in controlled clinical trials (100 mg/day) based on body surface area. Malignant uterine tumors, endometrial and myometrial were found in rats as follows: 0/50 control females, 2/50 females given 1.7 mg/kg daily, 7/49 females given 9.8 mg/kg daily, and 9/50 females given 44 mg/kg daily. The occurrence of these neoplasms is probably attributable to the high estrogen/progesterone ratio which occurs in rats as a result of the prolactin-inhibiting action of bromocriptine mesylate. The endocrine mechanisms believed to be involved in the rats are not present in humans. There is no known correlation between uterine malignancies occurring in bromocriptine-treated rats and human risk. In contrast to the findings in rats, the uteri from mice killed after 74 weeks of treatment did not exhibit evidence of drug-related changes.
 
*Bromocriptine mesylate was evaluated for mutagenic potential in the battery of tests that included Ames bacterial mutation assay, mutagenic activity in vitro on V79 Chinese hamster fibroblasts, cytogenetic analysis of Chinese hamster bone marrow cells following in vivo treatment, and an in vivo micronucleus test for mutagenic potential in mice.
 
*No mutagenic effects were obtained in any of these tests.
 
*Fertility and reproductive performance in female rats were not influenced adversely by treatment with bromocriptine beyond the predicted decrease in the weight of pups due to suppression of lactation. In males treated with 50 mg/kg of this drug, mating and fertility were within the normal range. Increased perinatal loss was produced in the subgroups of dams, sacrificed on day 21 postpartum (p.p.) after mating with males treated with the highest dose (50 mg/kg).
 
 


<!--Clinical Studies-->
<!--Clinical Studies-->

Revision as of 21:24, 7 January 2015

Bromocriptine
Black Box Warning
Adult Indications & Dosage
Pediatric Indications & Dosage
Contraindications
Warnings & Precautions
Adverse Reactions
Drug Interactions
Use in Specific Populations
Administration & Monitoring
Overdosage
Pharmacology
Clinical Studies
How Supplied
Images
Patient Counseling Information
Precautions with Alcohol
Brand Names
Look-Alike Names

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vignesh Ponnusamy, M.B.B.S. [2]

Disclaimer

WikiDoc MAKES NO GUARANTEE OF VALIDITY. WikiDoc is not a professional health care provider, nor is it a suitable replacement for a licensed healthcare provider. WikiDoc is intended to be an educational tool, not a tool for any form of healthcare delivery. The educational content on WikiDoc drug pages is based upon the FDA package insert, National Library of Medicine content and practice guidelines / consensus statements. WikiDoc does not promote the administration of any medication or device that is not consistent with its labeling. Please read our full disclaimer here.

Black Box Warning

Title
See full prescribing information for complete Boxed Warning.
ConditionName:
  • Content

Overview

Bromocriptine is a that is FDA approved for the {{{indicationType}}} of . There is a Black Box Warning for this drug as shown here. Common adverse reactions include .

Adult Indications and Dosage

FDA-Labeled Indications and Dosage (Adult)

Condition1
  • Dosing Information
  • Dosage
Condition2
  • Dosing Information
  • Dosage
Condition3
  • Dosing Information
  • Dosage
Condition4
  • Dosing Information
  • Dosage

Off-Label Use and Dosage (Adult)

Guideline-Supported Use

Condition1
  • Developed by:
  • Class of Recommendation:
  • Strength of Evidence:
  • Dosing Information
  • Dosage
Condition2

There is limited information regarding Off-Label Guideline-Supported Use of Bromocriptine in adult patients.

Non–Guideline-Supported Use

Condition1
  • Dosing Information
  • Dosage
Condition2

There is limited information regarding Off-Label Non–Guideline-Supported Use of Bromocriptine in adult patients.

Pediatric Indications and Dosage

FDA-Labeled Indications and Dosage (Pediatric)

Condition1
  • Dosing Information
  • Dosage
Condition2

There is limited information regarding FDA-Labeled Use of Bromocriptine in pediatric patients.

Off-Label Use and Dosage (Pediatric)

Guideline-Supported Use

Condition1
  • Developed by:
  • Class of Recommendation:
  • Strength of Evidence:
  • Dosing Information
  • Dosage
Condition2

There is limited information regarding Off-Label Guideline-Supported Use of Bromocriptine in pediatric patients.

Non–Guideline-Supported Use

Condition1
  • Dosing Information
  • Dosage
Condition2

There is limited information regarding Off-Label Non–Guideline-Supported Use of Bromocriptine in pediatric patients.

Contraindications

  • Hypersensitivity to bromocriptine or to any of the excipients of bromocriptine mesylate tablets, uncontrolled hypertension and sensitivity to any ergot alkaloids. In patients being treated for hyperprolactinemia, bromocriptine mesylate should be withdrawn when pregnancy is diagnosed (see PRECAUTIONS, Hyperprolactinemic States). In the event that bromocriptine mesylate is reinstituted to control a rapidly expanding macroadenoma (see PRECAUTIONS, Hyperprolactinemic States) and a patient experiences a hypertensive disorder of pregnancy, the benefit of continuing bromocriptine mesylate must be weighed against the possible risk of its use during a hypertensive disorder of pregnancy.
  • When bromocriptine mesylate is being used to treat acromegaly, prolactinoma, or Parkinson’s disease in patients who subsequently become pregnant, a decision should be made as to whether the therapy continues to be medically necessary or can be withdrawn. If it is continued, the drug should be withdrawn in those who may experience hypertensive disorders of pregnancy (including eclampsia, preeclampsia, or pregnancy-induced hypertension) unless withdrawal of bromocriptine mesylate is considered to be medically contraindicated.
  • The drug should not be used during the postpartum period in women with a history of coronary artery disease and other severe cardiovascular conditions unless withdrawal is considered medically contraindicated. If the drug is used in the postpartum period, the patient should be observed with caution.

Warnings

Title
See full prescribing information for complete Boxed Warning.
ConditionName:
  • Content
  • Since hyperprolactinemia with amenorrhea/galactorrhea and infertility has been found in patients with pituitary tumors, a complete evaluation of the pituitary is indicated before treatment with bromocriptine mesylate.
  • If pregnancy occurs during bromocriptine mesylate administration, careful observation of these patients is mandatory. Prolactin-secreting adenomas may expand and compression of the optic or other cranial nerves may occur, emergency pituitary surgery becoming necessary. In most cases, the compression resolves following delivery. Reinitiation of bromocriptine mesylate treatment has been reported to produce improvement in the visual fields of patients in whom nerve compression has occurred during pregnancy. The safety of bromocriptine mesylate treatment during pregnancy to the mother and fetus has not been established.
  • Bromocriptine mesylate has been associated with somnolence, and episodes of sudden sleep onset, particularly in patients with Parkinson’s disease. Sudden onset of sleep during daily activities, in some cases without awareness or warning signs, has been reported. Patients must be informed of this and advised not to drive or operate machines during treatment with bromocriptine. Patients who have experienced somnolence and/or an episode of sudden sleep onset must not drive or operate machines. Furthermore, a reduction of dosage or termination of therapy may be considered.
  • Symptomatic hypotension can occur in patients treated with bromocriptine mesylate for any indication. In postpartum studies with bromocriptine mesylate, decreases in supine systolic and diastolic pressures of greater than 20 mm and 10 mm Hg, respectively, have been observed in almost 30% of patients receiving bromocriptine mesylate. On occasion, the drop in supine systolic pressure was as much as 50-59 mm of Hg.
  • Since, especially during the first days of treatment, hypotensive reactions may occasionally occur and result in reduced alertness, particular care should be exercised when driving a vehicle or operating machinery.
  • While hypotension during the start of therapy with bromocriptine mesylate occurs in some patients, in rare cases serious adverse events, including hypertension, myocardial infarction, seizures, stroke, have been reported in postpartum women treated with bromocriptine mesylate. Hypertension has been reported, sometimes at the initiation of therapy, but often developing in the second week of therapy; seizures have also been reported both with and without the prior development of hypertension; stroke has been reported mostly in postpartum patients whose prenatal and obstetric courses had been uncomplicated. Many of these patients experiencing seizures (including cases of status epilepticus) and/or strokes reported developing a constant and often progressively severe headache hours to days prior to the acute event. Some cases of strokes and seizures were also preceded by visual disturbances (blurred vision, and transient cortical blindness). Cases of acute myocardial infarction have also been reported.
  • Although a causal relationship between bromocriptine mesylate administration and hypertension, seizures, strokes, and myocardial infarction in postpartum women has not been established, use of the drug in patients with uncontrolled hypertension is not recommended. In patients being treated for hyperprolactinemia, bromocriptine mesylate should be withdrawn when pregnancy is diagnosed (see PRECAUTIONS, Hyperprolactinemic States). In the event that bromocriptine mesylate is reinstituted to control a rapidly expanding macroadenoma (see PRECAUTIONS, Hyperprolactinemic States) and a patient experiences a hypertensive disorder of pregnancy, the benefit of continuing bromocriptine mesylate must be weighed against the possible risk of its use during a hypertensive disorder of pregnancy. When bromocriptine mesylate is being used to treat acromegaly or Parkinson’s disease in patients who subsequently become pregnant, a decision should be made as to whether the therapy continues to be medically necessary or can be withdrawn. If it is continued, the drug should be withdrawn in those who may experience hypertensive disorders of pregnancy (including eclampsia, preeclampsia, or pregnancy-induced hypertension) unless withdrawal of bromocriptine mesylate is considered to be medically contraindicated. Because of the possibility of an interaction between bromocriptine mesylate and other ergot alkaloids, the concomitant use of these medications is not recommended. Periodic monitoring of the blood pressure, particularly during the first weeks of therapy is prudent. If hypertension, severe, progressive, or unremitting headache (with or without visual disturbance), or evidence of CNS toxicity develops, drug therapy should be discontinued and the patient should be evaluated promptly. Particular attention should be paid to patients who have recently been treated or are on concomitant therapy with drugs that can alter blood pressure. Their concomitant use in the puerperium is not recommended.
  • Among patients on bromocriptine mesylate, particularly on long-term and high-dose treatment, pleural and pericardial effusions, as well as pleural and pulmonary fibrosis and constrictive pericarditis, have been reported. Patients with unexplained pleuropulmonary disorders should be examined thoroughly and discontinuation of bromocriptine mesylate therapy should be considered. In those instances in which bromocriptine mesylate treatment was terminated, the changes slowly reverted towards normal.
  • In a few patients on bromocriptine mesylate, particularly on long-term and high-dose treatment, retroperitoneal fibrosis has been reported. To ensure recognition of retroperitoneal fibrosis at an early reversible stage it is recommended that its manifestations (e.g., back pain, edema of the lower limbs, impaired kidney function) should be watched in this category of patients. Bromocriptine mesylate medication should be withdrawn if fibrotic changes in the retroperitoneum are diagnosed or suspected.

Precautions

  • General
  • Safety and efficacy of bromocriptine mesylate have not been established in patients with renal or hepatic disease. Care should be exercised when administering bromocriptine mesylate therapy concomitantly with other medications known to lower blood pressure.
  • The drug should be used with caution in patients with a history of psychosis or cardiovascular disease. If acromegalic patients or patients with prolactinoma or Parkinson's disease are being treated with bromocriptine mesylate during pregnancy, they should be cautiously observed, particularly during the postpartum period if they have a history of cardiovascular disease.
  • Patients with rare hereditary problems of galactose intolerance, severe lactase deficiency or glucose-galactose malabsorption should not take this medicine.
  • Hyperprolactinemic States
  • Visual field impairment is a known complication of macroprolactinoma. Effective treatment with bromocriptine mesylate leads to a reduction in hyperprolactinemia and often to a resolution of the visual impairment. In some patients, however, a secondary deterioration of visual fields may subsequently develop despite normalized prolactin levels and tumor shrinkage, which may result from traction on the optic chiasm which is pulled down into the now partially empty sella. In these cases, the visual field defect may improve on reduction of bromocriptine dosage while there is some elevation of prolactin and some tumor re-expansion. Monitoring of visual fields in patients with macroprolactinoma is therefore recommended for an early recognition of secondary field loss due to chiasmal herniation and adaptation of drug dosage.
  • The relative efficacy of bromocriptine mesylate versus surgery in preserving visual fields is not known. Patients with rapidly progressive visual field loss should be evaluated by a neurosurgeon to help decide on the most appropriate therapy.
  • Since pregnancy is often the therapeutic objective in many hyperprolactinemic patients presenting with amenorrhea/galactorrhea and hypogonadism (infertility), a careful assessment of the pituitary is essential to detect the presence of a prolactin-secreting adenoma. Patients not seeking pregnancy, or those harboring large adenomas, should be advised to use contraceptive measures, other than oral contraceptives, during treatment with bromocriptine mesylate. Since pregnancy may occur prior to reinitiation of menses, a pregnancy test is recommended at least every 4 weeks during the amenorrheic period, and, once menses are reinitiated, every time a patient misses a menstrual period. Treatment with bromocriptine mesylate should be discontinued as soon as pregnancy has been established. Patients must be monitored closely throughout pregnancy for signs and symptoms that may signal the enlargement of a previously undetected or existing prolactin-secreting tumor. Discontinuation of bromocriptine mesylate treatment in patients with known macroadenomas has been associated with rapid regrowth of tumor and increase in serum prolactin in most cases.
  • Cerebrospinal fluid rhinorrhea has been observed in some patients with prolactin-secreting adenomas treated with bromocriptine mesylate.
  • Acromegaly
  • Cld-sensitive digital vasospasm has been observed in some acromegalic patients treated with bromocriptine mesylate. The response, should it occur, can be reversed by reducing the dose of bromocriptine mesylate and may be prevented by keeping the fingers warm. Cases of severe gastrointestinal bleeding from peptic ulcers have been reported, some fatal. Although there is no evidence that bromocriptine mesylate increases the incidence of peptic ulcers in acromegalic patients, symptoms suggestive of peptic ulcer should be investigated thoroughly and treated appropriately. Patients with a history of peptic ulcer or gastrointestinal bleeding should be observed carefully during treatment with bromocriptine mesylate.
  • Possible tumor expansion while receiving bromocriptine mesylate therapy has been reported in a few patients. Since the natural history of growth hormone-secreting tumors is unknown, all patients should be carefully monitored and, if evidence of tumor expansion develops, discontinuation of treatment and alternative procedures considered.
  • Parkinson's Disease
  • Safety during long-term use for more than 2 years at the doses required for parkinsonism has not been established.
  • As with any chronic therapy, periodic evaluation of hepatic, hematopoietic, cardiovascular, and renal function is recommended. Symptomatic hypotension can occur and, therefore, caution should be exercised when treating patients receiving antihypertensive drugs.
  • High doses of bromocriptine mesylate may be associated with confusion and mental disturbances. Since parkinsonian patients may manifest mild degrees of dementia, caution should be used when treating such patients.
  • Bromocriptine mesylate administered alone or concomitantly with levodopa may cause hallucinations (visual or auditory). Hallucinations usually resolve with dosage reduction; occasionally, discontinuation of bromocriptine mesylate is required. Rarely, after high doses, hallucinations have persisted for several weeks following discontinuation of bromocriptine mesylate.
  • Postmarketing reports suggest that patients treated with anti-Parkinson medications can experience intense urges to gamble, increased sexual urges, intense urges to spend money uncontrollably, and other intense urges. Patients may be unable to control these urges while taking one or more of the medications that are generally used for the treatment of Parkinson’s disease and that increase central dopaminergic tone, including bromocriptine mesylate. In some cases, although not all, these urges were reported to have stopped when the dose was reduced or the medication was discontinued. Because patients may not recognize these behaviors as abnormal it is important for prescribers to specifically ask patients or their caregivers about the development of new or increased gambling urges, sexual urges, uncontrolled spending or other urges while being treated with bromocriptine mesylate. Physicians should consider dose reduction or stopping the medication if a patient develops such urges while taking bromocriptine mesylate.
  • As with levodopa, caution should be exercised when administering bromocriptine mesylate to patients with a history of myocardial infarction who have a residual atrial, nodal, or ventricular arrhythmia.
  • Retroperitoneal fibrosis has been reported in a few patients receiving long-term therapy (2-10 years) with bromocriptine mesylate in doses ranging from 30-140 mg daily.
  • Epidemiological studies have shown that patients with Parkinson’s disease have a higher risk (2-approximately 6-fold higher) of developing melanoma than the general population. Whether the increased risk observed was due to Parkinson’s disease or other factors, such as drugs used to treat Parkinson’s disease, is unclear. For the reasons stated above, patients and providers are advised to monitor for melanomas frequently and on a regular basis when using bromocriptine mesylate for any indication. Ideally, periodic skin examinations should be performed by appropriately qualified individuals (e.g. dermatologists).
  • Discontinuation of bromocriptine mesylate should be undertaken gradually whenever possible, even if the patient is to remain on L-dopa. A symptom complex resembling the neuroleptic malignant syndrome (characterized by elevated temperature, muscular rigidity, altered consciousness, and autonomic instability), with no other obvious etiology, has been reported in association with rapid dose reduction, withdrawal of, or changes in antiparkinsonian therapy.

Adverse Reactions

Clinical Trials Experience

There is limited information regarding Clinical Trial Experience of Bromocriptine in the drug label.

Body as a Whole
Cardiovascular
Digestive
Endocrine
Hematologic and Lymphatic
Metabolic and Nutritional
Musculoskeletal
Neurologic
Respiratory
Skin and Hypersensitivy Reactions
Special Senses
Urogenital
Miscellaneous

Postmarketing Experience

There is limited information regarding Postmarketing Experience of Bromocriptine in the drug label.

Body as a Whole
Cardiovascular
Digestive
Endocrine
Hematologic and Lymphatic
Metabolic and Nutritional
Musculoskeletal
Neurologic
Respiratory
Skin and Hypersensitivy Reactions
Special Senses
Urogenital
Miscellaneous

Drug Interactions

  • The risk of using bromocriptine mesylate in combination with other drugs has not been systematically evaluated, but alcohol may potentiate the side effects of bromocriptine mesylate. Bromocriptine mesylate may interact with dopamine antagonists, butyrophenones, and certain other agents. Compounds in these categories result in a decreased efficacy of bromocriptine mesylate: phenothiazines, haloperidol, metoclopramide, pimozide. Bromocriptine is a substrate of CYP3A4. Caution should therefore be used when co-administering drugs which are strong inhibitors of this enzyme (such as azole antimycotics, HIV protease inhibitors). The concomitant use of macrolide antibiotics such as erythromycin was shown to increase the plasma levels of bromocriptine (mean AUC and Cmax values increased 3.7-fold and 4.6-fold, respectively). 1The concomitant treatment of acromegalic patients with bromocriptine and octreotide led to increased plasma levels of bromocriptine (bromocriptine AUC increased about 38%). 4Concomitant use of bromocriptine mesylate with other ergot alkaloids is not recommended. Dose adjustment may be necessary in those cases where high doses of bromocriptine are being used (such as Parkinson’s disease indication).

Use in Specific Populations

Pregnancy

Pregnancy Category (FDA):

  • Pregnancy Category B
  • Administration of 10-30 mg/kg of bromocriptine to 2 strains of rats on days 6-15 postcoitum (p.c.) as well as a single dose of 10 mg/kg on day 5 p.c. interfered with nidation.
  • Three mg/kg given on days 6-15 were without effect on nidation, and did not produce any anomalies. In animals treated from day 8-15 p.c., i.e., after implantation, 30 mg/kg produced increased prenatal mortality in the form of increased incidence of embryonic resorption. One anomaly, aplasia of spinal vertebrae and ribs, was found in the group of 262 fetuses derived from the dams treated with 30 mg/kg bromocriptine. No fetotoxic effects were found in offspring of dams treated during the peri- or postnatal period.
  • Two studies were conducted in rabbits (2 strains) to determine the potential to interfere with nidation. Dose levels of 100 or 300 mg/kg/day from day 1 to day 6 p.c. did not adversely affect nidation. The high dose was approximately 63 times the maximum human dose administered in controlled clinical trials (100 mg/day), based on body surface area. In New Zealand white rabbits, some embryo mortality occurred at 300 mg/kg which was a reflection of overt maternal toxicity. Three studies were conducted in 2 strains of rabbits to determine the teratological potential of bromocriptine at dose levels of 3, 10, 30, 100, and 300 mg/kg given from day 6 to day 18 p.c. In 2 studies with the Yellow-silver strain, cleft palate was found in 3 and 2 fetuses at maternally toxic doses of 100 and 300 mg/kg, respectively. One control fetus also exhibited this anomaly. In the third study conducted with New Zealand white rabbits using an identical protocol, no cleft palates were produced.
  • No teratological or embryotoxic effects of bromocriptine were produced in any of 6 offspring from 6 monkeys at a dose level of 2 mg/kg.
  • Information concerning 1276 pregnancies in women taking bromocriptine mesylate has been collected. In the majority of cases, bromocriptine mesylate was discontinued within 8 weeks into pregnancy (mean 28.7 days), however, 8 patients received the drug continuously throughout pregnancy. The mean daily dose for all patients was 5.8 mg (range 1-40 mg).
  • Of these 1276 pregnancies, there were 1088 full-term deliveries (4 stillborn), 145 spontaneous abortions (11.4%), and 28 induced abortions (2.2%). Moreover, 12 extrauterine gravidities and 3 hydatidiform moles (twice in the same patient) caused early termination of pregnancy. These data compare favorably with the abortion rate (11%-25%) cited for pregnancies induced by clomiphene citrate, menopausal gonadotropin, and chorionic gonadotropin.
  • Although spontaneous abortions often go unreported, especially prior to 20 weeks of gestation, their frequency has been estimated to be 15%.
  • The incidence of birth defects in the population at large ranges from 2%-4.5%. The incidence in 1109 live births from patients receiving bromocriptine is 3.3%.
  • There is no suggestion that bromocriptine mesylate contributed to the type or incidence of birth defects in this group of infants.


Pregnancy Category (AUS):

  • Australian Drug Evaluation Committee (ADEC) Pregnancy Category

There is no Australian Drug Evaluation Committee (ADEC) guidance on usage of Bromocriptine in women who are pregnant.

Labor and Delivery

There is no FDA guidance on use of Bromocriptine during labor and delivery.

Nursing Mothers

  • Bromocriptine mesylate should not be used during lactation in postpartum women.

Pediatric Use

  • The safety and effectiveness of bromocriptine for the treatment of prolactin-secreting pituitary adenomas have been established in patients age 16 to adult. No data are available for bromocriptine use in pediatric patients under the age of 8 years. A single 8-year-old patient treated with bromocriptine for a prolactin-secreting pituitary macroadenoma has been reported without therapeutic response.
  • The use of bromocriptine for the treatment of prolactin-secreting adenomas in pediatric patients in the age group 11 to under 16 years is supported by evidence from well-controlled trials in adults, with additional data in a limited number (n=14) of children and adolescents 11 to 15 years of age with prolactin-secreting pituitary macro- and microadenomas who have been treated with bromocriptine. Of the 14 reported patients, 9 had successful outcomes, 3 partial responses, and 2 failed to respond to bromocriptine treatment. Chronic hypopituitarism complicated macroadenoma treatment in 5 of the responders, both in patients receiving bromocriptine alone and in those who received bromocriptine in combination with surgical treatment and/or pituitary irradiation.
  • Safety and effectiveness of bromocriptine in pediatric patients have not been established for any other indication listed in the INDICATIONS AND USAGE section.

Geriatic Use

There is no FDA guidance on the use of Bromocriptine with respect to geriatric patients.

Gender

There is no FDA guidance on the use of Bromocriptine with respect to specific gender populations.

Race

There is no FDA guidance on the use of Bromocriptine with respect to specific racial populations.

Renal Impairment

There is no FDA guidance on the use of Bromocriptine in patients with renal impairment.

Hepatic Impairment

There is no FDA guidance on the use of Bromocriptine in patients with hepatic impairment.

Females of Reproductive Potential and Males

There is no FDA guidance on the use of Bromocriptine in women of reproductive potentials and males.

Immunocompromised Patients

There is no FDA guidance one the use of Bromocriptine in patients who are immunocompromised.

Administration and Monitoring

Administration

  • Oral
  • Intravenous

Monitoring

There is limited information regarding Monitoring of Bromocriptine in the drug label.

  • Description

IV Compatibility

There is limited information regarding IV Compatibility of Bromocriptine in the drug label.

Overdosage

Acute Overdose

Signs and Symptoms

  • Description

Management

  • Description

Chronic Overdose

There is limited information regarding Chronic Overdose of Bromocriptine in the drug label.

Pharmacology

There is limited information regarding Bromocriptine Pharmacology in the drug label.

Mechanism of Action

  • Bromocriptine mesylate is a dopamine receptor agonist, which activates post-synaptic dopamine receptors. The dopaminergic neurons in the tuberoinfundibular process modulate the secretion of prolactin from the anterior pituitary by secreting a prolactin inhibitory factor (thought to be dopamine); in the corpus striatum the dopaminergic neurons are involved in the control of motor function. Clinically, bromocriptine mesylate significantly reduces plasma levels of prolactin in patients with physiologically elevated prolactin as well as in patients with hyperprolactinemia. The inhibition of physiological lactation as well as galactorrhea in pathological hyperprolactinemic states is obtained at dose levels that do not affect secretion of other tropic hormones from the anterior pituitary. Experiments have demonstrated that bromocriptine induces long-lasting stereotyped behavior in rodents and turning behavior in rats having unilateral lesions in the substantia nigra. These actions, characteristic of those produced by dopamine, are inhibited by dopamine antagonists and suggest a direct action of bromocriptine on striatal dopamine receptors.
  • Bromocriptine mesylate is a nonhormonal, nonestrogenic agent that inhibits the secretion of prolactin in humans, with little or no effect on other pituitary hormones, except in patients with acromegaly, where it lowers elevated blood levels of growth hormone in the majority of patients.

Structure

  • Bromocriptine mesylate is an ergot derivative with potent dopamine receptor agonist activity. Each bromocriptine mesylate tablet, USP for oral administration contains 2.5 mg bromocriptine (as the mesylate). Bromocriptine mesylate is chemically designated as Ergotaman-3',6',18-trione, 2-bromo-12'-hydroxy-2'-(1-methylethyl)-5'-(2-methylpropyl)-,(5'α)-monomethanesulfonate (salt).
  • The structural formula is:
This image is provided by the National Library of Medicine.
  • Active Ingredient: bromocriptine mesylate, USP
  • Inactive Ingredients: anhydrous lactose, colloidal silicon dioxide, magnesium stearate, maleic acid, povidone and pregelatinized starch.

Pharmacodynamics

  • Bromocriptine mesylate produces its therapeutic effect in the treatment of Parkinson’s disease, a clinical condition characterized by a progressive deficiency in dopamine synthesis in the substantia nigra, by directly stimulating the dopamine receptors in the corpus striatum. In contrast, levodopa exerts its therapeutic effect only after conversion to dopamine by the neurons of the substantia nigra, which are known to be numerically diminished in this patient population.

Pharmacokinetics

  • Absorption
  • Following single dose administration of bromocriptine mesylate tablets, 2 x 2.5 mg to 5 healthy volunteers under fasted conditions, the mean peak plasma levels of bromocriptine, time to reach peak plasma concentrations and elimination half-life were 465 pg/mL ± 226, 2.5 hrs ± 2 and 4.85 hr, respectively. Linear relationship was found between single doses of bromocriptine mesylate and Cmax and AUC in the dose range of 1 to 7.5 mg. The pharmacokinetics of bromocriptine metabolites have not been reported.
  • Food did not significantly affect the systemic exposure of bromocriptine following administration of bromocriptine mesylate tablets, 2.5 mg. It is recommended that bromocriptine mesylate be taken with food because of the high percentage of subjects who vomit upon receiving bromocriptine under fasting conditions.
  • Following bromocriptine mesylate 5 mg administered twice daily for 14 days, the bromocriptine Cmax and AUC at steady state were 628 ± 375 pg/mL and 2377 ± 1186 pg*hr/mL, respectively.
  • Distribution
  • In vitro experiments showed that bromocriptine was 90%-96% bound to serum albumin.
  • Metabolism
  • Bromocriptine undergoes extensive first-pass biotransformation, reflected by complex metabolite profiles and by almost complete absence of parent drug in urine and feces.
  • In vitro studies using human liver microsomes showed that bromocriptine has a high affinity for CYP3A and hydroxylations at the proline ring of the cyclopeptide moiety constituted a main metabolic pathway. Inhibitors and/or potent substrates for CYP3A4 might therefore inhibit the clearance of bromocriptine and lead to increased levels. (see PRECAUTIONS, drug interactions section). The participation of other major CYP enzymes such as 2D6, 2C8, and 2C19 on the metabolism of bromocriptine has not been evaluated. Bromocriptine is also an inhibitor of CYP3A4 with a calculated IC50 value of 1.69 μM. Given the low therapeutic concentrations of bromocriptine in patients (Cmax=0.82 nM), a significant alteration of the metabolism of a second drug whose clearance is mediated by CYP3A4 should not be expected. The potential effect of bromocriptine and its metabolites to act as inducers of CYP enzymes has not been reported.
  • Excretion
  • About 82% and 5.6 % of the radioactive dose orally administered was recovered in feces and urine, respectively. Bromolysergic acid and bromoisolysergic acid accounted for half of the radioactivity in urine.5
  • Special Populations
  • Effect of Renal Impairment
  • The effect of renal function on the pharmacokinetics of bromocriptine has not been evaluated.
  • Since parent drug and metabolites are almost completely excreted via metabolism, and only 6% eliminated via the kidney, renal impairment may not have a significant impact on the PK of bromocriptine and its metabolites.
  • Effect of Liver Impairment
  • The effect of liver impairment on the PK of bromocriptine mesylate and its metabolites has not been evaluated. Since bromocriptine mesylate is mainly eliminated by metabolism, liver impairment may increase the plasma levels of bromocriptine, therefore, caution may be necessary.
  • The effect of age, race, and gender on the pharmacokinetics of bromocriptine and its metabolites has not been evaluated.

Nonclinical Toxicology

  • A 74-week study was conducted in mice using dietary levels of bromocriptine mesylate equivalent to oral doses of 10 and 50 mg/kg/day. A 100-week study in rats was conducted using dietary levels equivalent to oral doses of 1.7, 9.8, and 44 mg/kg/day. The highest doses tested in mice and rats were approximately 2.5 and 4.4 times, respectively, the maximum human dose administered in controlled clinical trials (100 mg/day) based on body surface area. Malignant uterine tumors, endometrial and myometrial were found in rats as follows: 0/50 control females, 2/50 females given 1.7 mg/kg daily, 7/49 females given 9.8 mg/kg daily, and 9/50 females given 44 mg/kg daily. The occurrence of these neoplasms is probably attributable to the high estrogen/progesterone ratio which occurs in rats as a result of the prolactin-inhibiting action of bromocriptine mesylate. The endocrine mechanisms believed to be involved in the rats are not present in humans. There is no known correlation between uterine malignancies occurring in bromocriptine-treated rats and human risk. In contrast to the findings in rats, the uteri from mice killed after 74 weeks of treatment did not exhibit evidence of drug-related changes.
  • Bromocriptine mesylate was evaluated for mutagenic potential in the battery of tests that included Ames bacterial mutation assay, mutagenic activity in vitro on V79 Chinese hamster fibroblasts, cytogenetic analysis of Chinese hamster bone marrow cells following in vivo treatment, and an in vivo micronucleus test for mutagenic potential in mice.
  • No mutagenic effects were obtained in any of these tests.
  • Fertility and reproductive performance in female rats were not influenced adversely by treatment with bromocriptine beyond the predicted decrease in the weight of pups due to suppression of lactation. In males treated with 50 mg/kg of this drug, mating and fertility were within the normal range. Increased perinatal loss was produced in the subgroups of dams, sacrificed on day 21 postpartum (p.p.) after mating with males treated with the highest dose (50 mg/kg).

Clinical Studies

  • In about 75% of cases of amenorrhea and galactorrhea, bromocriptine mesylate therapy suppresses the galactorrhea completely, or almost completely, and reinitiates normal ovulatory menstrual cycles.
  • Menses are usually reinitiated prior to complete suppression of galactorrhea; the time for this on average is 6-8 weeks. However, some patients respond within a few days, and others may take up to 8 months.
  • Galactorrhea may take longer to control depending on the degree of stimulation of the mammary tissue prior to therapy. At least a 75% reduction in secretion is usually observed after 8-12 weeks. Some patients may fail to respond even after 12 months of therapy.
  • In many acromegalic patients, bromocriptine mesylate produces a prompt and sustained reduction in circulating levels of serum growth hormone.

How Supplied

Storage

There is limited information regarding Bromocriptine Storage in the drug label.

Images

Drug Images

{{#ask: Page Name::Bromocriptine |?Pill Name |?Drug Name |?Pill Ingred |?Pill Imprint |?Pill Dosage |?Pill Color |?Pill Shape |?Pill Size (mm) |?Pill Scoring |?NDC |?Drug Author |format=template |template=DrugPageImages |mainlabel=- |sort=Pill Name }}

Package and Label Display Panel

{{#ask: Label Page::Bromocriptine |?Label Name |format=template |template=DrugLabelImages |mainlabel=- |sort=Label Page }}

Patient Counseling Information

  • During clinical trials, dizziness, drowsiness, faintness, fainting, and syncope have been reported early in the course of bromocriptine mesylate therapy. In postmarketing reports, bromocriptine mesylate has been associated with somnolence, and episodes of sudden sleep onset, particularly in patients with Parkinson’s disease. Sudden onset of sleep during daily activities, in some cases without awareness or warning signs, has been reported very rarely. All patients receiving bromocriptine mesylate should be cautioned with regard to engaging in activities requiring rapid and precise responses, such as driving an automobile or operating machinery. Patients being treated with bromocriptine mesylate and presenting with somnolence and/or sudden sleep episodes must be advised not to drive or engage in activities where impaired alertness may put themselves or others at risk of serious injury or death (e.g., operating machines).
  • Patients receiving bromocriptine mesylate for hyperprolactinemic states associated with macroadenoma or those who have had previous transsphenoidal surgery, should be told to report any persistent watery nasal discharge to their physician. Patients receiving bromocriptine mesylate for treatment of a macroadenoma should be told that discontinuation of drug may be associated with rapid regrowth of the tumor and recurrence of their original symptoms.
  • Patients and their caregivers should be alerted to the possibility that they may experience intense urges to spend money uncontrollably, intense urges to gamble, increased sexual urges and other intense urges and the inability to control these urges while taking bromocriptine mesylate. [see PRECAUTIONS].
  • Especially during the first days of treatment, hypotensive reactions may occasionally occur and result in reduced alertness, particular care should be exercised when driving a vehicle or operating machinery.

Precautions with Alcohol

  • Alcohol-Bromocriptine interaction has not been established. Talk to your doctor about the effects of taking alcohol with this medication.

Brand Names

  • BROMOCRIPTINE MESYLATE®[1]

Look-Alike Drug Names

Drug Shortage Status

Price

References

The contents of this FDA label are provided by the National Library of Medicine.

  1. "BROMOCRIPTINE MESYLATE- bromocriptine mesylate tablet".
  2. "http://www.ismp.org". External link in |title= (help)


{{#subobject:

 |Page Name=Bromocriptine
 |Pill Name=No image.jpg
 |Drug Name=
 |Pill Ingred=|+sep=;
 |Pill Imprint=
 |Pill Dosage=
 |Pill Color=|+sep=;
 |Pill Shape=
 |Pill Size (mm)=
 |Pill Scoring=
 |Pill Image=
 |Drug Author=
 |NDC=

}}


{{#subobject:

 |Label Page=Bromocriptine
 |Label Name=Bromocriptine11.png

}}


{{#subobject:

 |Label Page=Bromocriptine
 |Label Name=Bromocriptine11.png

}}