Lassa fever causes: Difference between revisions

Jump to navigation Jump to search
Ammu Susheela (talk | contribs)
Ammu Susheela (talk | contribs)
Line 35: Line 35:


===Receptors===
===Receptors===
* The [[Lassa virus]] gains entry into the [[host]] cell by means of the [[cell-surface receptor]] the alpha-[[dystroglycan]] (alpha-DG),<ref name="pmid10888638">{{cite journal| author=Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH et al.| title=Genetic diversity among Lassa virus strains. | journal=J Virol | year= 2000 | volume= 74 | issue= 15 | pages= 6992-7004 | pmid=10888638 | doi= | pmc=PMC112216 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10888638  }} </ref> a versatile [[receptor]] for [[protein]]s of the [[extracellular matrix]]. It shares this [[receptor]] with the prototypic Old World [[arenavirus]] [[lymphocytic choriomeningitis]] virus. [[Receptor]] recognition depends on a specific sugar modification of alpha-dystroglycan by a group of [[glycosyltransferases]] known as the LARGE [[proteins]]. Specific variants of the [[genes]] encoding these [[proteins]] appear to be under positive selection inWest Africa where Lassa is endemic. [[Alpha-dystroglycan]] is also used as a [[receptor]] by [[viruses]] of the New World clade C [[arenaviruses]] (Oliveros and Latino viruses). In contrast, the New World [[arenaviruses]] of clades A and B, which include the important [[viruses]] Machupo, Guanarito, Junin, and Sabia in addition to the non pathogenic Amapari virus, use the [[transferrin]] receptor 1. A small aliphatic amino acid at the [[GP1]] [[glycoprotein]] [[amino acid]] position 260 is required for high-affinity binding to [[alpha-DG]]. In addition, [[GP1]] [[amino acid]] position 259 also appears to be important, since all [[arenaviruses]] showing high-affinity [[alpha-DG]] binding possess a bulky aromatic [[amino acid]] ([[tyrosine]] or [[phenylalanine]]) at this position.
* The [[Lassa virus]] gains entry into the [[host]] cell by means of the [[cell-surface receptor]] the alpha-[[dystroglycan]] (alpha-DG),<ref name="pmid10888638">{{cite journal| author=Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH et al.| title=Genetic diversity among Lassa virus strains. | journal=J Virol | year= 2000 | volume= 74 | issue= 15 | pages= 6992-7004 | pmid=10888638 | doi= | pmc=PMC112216 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10888638  }} </ref> a versatile [[receptor]] for [[protein]]s of the [[extracellular matrix]]. It shares this [[receptor]] with the prototypic Old World [[arenavirus]] [[lymphocytic choriomeningitis]] virus. [[Receptor]] recognition depends on a specific sugar modification of alpha-dystroglycan by a group of [[glycosyltransferases]] known as the LARGE [[proteins]]. Specific variants of the [[genes]] encoding these [[proteins]] appear to be under positive selection in West Africa where Lassa is endemic. [[Alpha-dystroglycan]] is also used as a [[receptor]] by [[viruses]] of the New World clade C [[arenaviruses]] (Oliveros and Latino viruses). In contrast, the New World [[arenaviruses]] of clades A and B, which include the important [[viruses]] Machupo, Guanarito, Junin, and Sabia in addition to the non pathogenic Amapari virus, use the [[transferrin]] receptor 1. A small aliphatic amino acid at the [[GP1]] [[glycoprotein]] [[amino acid]] position 260 is required for high-affinity binding to [[alpha-DG]]. In addition, [[GP1]] [[amino acid]] position 259 also appears to be important, since all [[arenaviruses]] showing high-affinity [[alpha-DG]] binding possess a bulky aromatic [[amino acid]] ([[tyrosine]] or [[phenylalanine]]) at this position.
* Unlike most enveloped viruses which use [[clathrin]] coated pits for cellular entry and bind to their [[receptors]] in a pH dependent fashion, Lassa and [[lymphocytic choriomeningitis virus]] instead use an [[endocytotic pathway]] independent of [[clathrin]], [[caveolin]], [[dynamin]] and [[actin]]. Once within the [[cell]] the [[viruses]] are rapidly delivered to [[endosomes]] via vesicular trafficking albeit one that is largely independent of the small GTPases Rab5 and Rab7. On contact with the [[endosome]] pH-dependent [[membrane fusion]] occurs mediated by the [[envelope]] [[glycoprotein]], which at the lower [[pH]] of the [[endosome]] binds the [[lysosome]] protein [[LAMP1]] which results in [[membrane]] [[fusion]] and escape from the [[endosome]].
* Unlike most enveloped viruses which use [[clathrin]] coated pits for cellular entry and bind to their [[receptors]] in a pH dependent fashion, Lassa and [[lymphocytic choriomeningitis virus]] instead use an [[endocytotic pathway]] independent of [[clathrin]], [[caveolin]], [[dynamin]] and [[actin]]. Once within the [[cell]] the [[viruses]] are rapidly delivered to [[endosomes]] via vesicular trafficking albeit one that is largely independent of the small GTPases Rab5 and Rab7. On contact with the [[endosome]] pH-dependent [[membrane fusion]] occurs mediated by the [[envelope]] [[glycoprotein]], which at the lower [[pH]] of the [[endosome]] binds the [[lysosome]] protein [[LAMP1]] which results in [[membrane]] [[fusion]] and escape from the [[endosome]].
===Life cycle===
===Life cycle===
* The [[life cycle]] of Lassa virus is similar to the Old World [[arenaviruses]]<ref name=Wikipedia>{{cite web | title = Wikipedia lassa virus | url =http://en.wikipedia.org/wiki/Lassa_virus }}</ref>. Lassa virus enters the [[cell]] by the receptor-mediated [[endocytosis]]. Which [[endocytotic pathway]] is used is not known yet, but at least the cellular entry is sensitive to [[cholesterol]] depletion. It was reported that [[virus]] internalization is limited upon [[cholesterol]] depletion. The [[receptor]] used for [[cell entry]] is [[alpha-dystroglycan]], a highly conserved and ubiquitously expressed [[cell]] surface [[receptor]] for extracellular [[matrix proteins]].  
* The [[life cycle]] of Lassa virus is similar to the Old World [[arenaviruses]]<ref name=Wikipedia>{{cite web | title = Wikipedia lassa virus | url =http://en.wikipedia.org/wiki/Lassa_virus }}</ref>. Lassa virus enters the [[cell]] by the receptor-mediated [[endocytosis]]. Which [[endocytotic pathway]] is used is not known yet, but at least the cellular entry is sensitive to [[cholesterol]] depletion. It was reported that [[virus]] internalization is limited upon [[cholesterol]] depletion. The [[receptor]] used for [[cell entry]] is [[alpha-dystroglycan]], a highly conserved and ubiquitously expressed [[cell]] surface [[receptor]] for extracellular [[matrix proteins]].  

Revision as of 11:15, 9 June 2015

style="background:#Template:Taxobox colour;"|Lassa Virus (LASV)
TEM micrograph of Lassa virus virions.
TEM micrograph of Lassa virus virions.
style="background:#Template:Taxobox colour;" | Virus classification
Group: Group V ((-)ssRNA)
Order: Unassigned
Family: Arenaviridae
Genus: Arenavirus
Species: Lassa virus

Lassa fever Microchapters

Home

Patient Information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Lassa fever from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lassa fever causes On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lassa fever causes

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lassa fever causes

CDC on Lassa fever causes

Lassa fever causes in the news

Blogs on Lassa fever causes

Directions to Hospitals Treating Lassa fever

Risk calculators and risk factors for Lassa fever causes

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [4]; Associate Editor(s)-in-Chief: Ammu Susheela, M.D. [5]

Synonyms and keywords: Lassa hemorrhagic fever; LHF

Overview

Lassa fever is caused by the Lassa virus, a member of the Arenaviridae family. It is an enveloped, single-stranded, bisegmented RNA virus. Mastomysrodents shed the virus in urine and droppings. The direct contact with these materials or ingestion or inhalation, can lead to infection. Lassa virus enters the cell by the receptor-mediated endocytosis and undergoes very rapid replication and manifest the disease.

Virus

Taxonomy

Biology

  • Lassa virus belongs to Arenaviridae [2].
  • The Arenaviridae are a family of viruses whose members are generally associated with rodent-transmitted diseases in humans. Each virus usually is associated with a particular rodent host species in which it is maintained.

Structure and genome

Outbreak Distribution Map Lassa Fever CDC.png[1][8]
  • Lassa fever causes hemorrhagic fever frequently in immunosuppressed patients. Replication for Lassa virus is very rapid and also demonstrates temporal control in replication.[9] The first replication step is transcription of mRNA copies of the negative- or minus-sense genome. This ensures an adequate supply of viral proteins for subsequent steps of replication, as the NP and L proteins are translated from the mRNA. The positive- or plus-sense genome, then makes viral complementary RNA (vcRNA)copies of itself. The RNA copies are a template for producing negative-sense progeny, but mRNA is also synthesized from it. The mRNA synthesized from vcRNA are translated to make the GP and Z proteins. This temporal control allows the spike proteins to be produced last, and therefore, delay recognition by the host immune system.
  • Nucleotide studies of the genome have shown that Lassa has four lineages: three found in Nigeria and the fourth in Guinea, Liberia, and Sierra Leone. The Nigerian strains seem likely to have been ancestral to the others but additional work is required to confirm this.[10].

Receptors

Life cycle

Natural Reservoir

  • The reservoir, or host, of Lassa virus is a rodent known as the "multimammate rat" (Mastomys natalensis). Once infected, this rodent is able to excrete virus in urine for an extended time period, maybe for the rest of its life. Mastomys rodents breed frequently, produce large numbers of offspring, and are numerous in the savannas and forests of west, central, and east Africa. In addition, Mastomys readily colonize human homes and areas where food is stored. All of these factors contribute to the relatively efficient spread of Lassa virus from infected rodents to humans.
Mastomys natalensis or the natal multimammate mouse.[2][15]
Mastomys natalensis is commonly known as the “multimammate rat” due to the female’s multiple and prominent mammary glands.[3][15]
  • Mastomysrodents shed the virus in urine and droppings and direct contact with these materials, through touching soiled objects, eating contaminated food, or exposure to open cuts or sores, can lead to infection. Because Mastomys rodents often live in and around homes and scavenge on leftover human food items or poorly stored food, direct contact transmission is common. Mastomys rodents are sometimes consumed as a food source and infection may occur when rodents are caught and prepared. Contact with the virus may also occur when a person inhales tiny particles in the air contaminated with infected rodent excretions.

Gallery

The images below display key features of the Lassa virus.

References

  1. "Taxonomy browser (Lassavirus)".
  2. "The Centers for Disease Control and Prevention".
  3. "Genome:The autobiography of a species in 23 chapters". Nat Genet. 24 (1): 21. 2000. doi:10.1038/71638. PMID 10615121.
  4. Moshkoff DA, Salvato MS, Lukashevich IS (2007). "Molecular characterization of a reassortant virus derived from Lassa and Mopeia viruses". Virus Genes. 34 (2): 169–76. doi:10.1007/s11262-006-0050-3. PMC 1892610. PMID 17143722.
  5. Cornu TI, de la Torre JC (2001). "RING finger Z protein of lymphocytic choriomeningitis virus (LCMV) inhibits transcription and RNA replication of an LCMV S-segment minigenome". J Virol. 75 (19): 9415–26. doi:10.1128/JVI.75.19.9415-9426.2001. PMC 114509. PMID 11533204.
  6. Djavani M, Lukashevich IS, Sanchez A, Nichol ST, Salvato MS (1997). "Completion of the Lassa fever virus sequence and identification of a RING finger open reading frame at the L RNA 5' End". Virology. 235 (2): 414–8. doi:10.1006/viro.1997.8722. PMID 9281522.
  7. Smelt SC, Borrow P, Kunz S, Cao W, Tishon A, Lewicki H; et al. (2001). "Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor alpha-dystroglycan correlate with viral tropism and disease kinetics". J Virol. 75 (1): 448–57. doi:10.1128/JVI.75.1.448-457.2001. PMC 113937. PMID 11119613.
  8. "Center for Disease Control and Prevention (CDC)".
  9. Lashley FR (2006). "Emerging infectious diseases at the beginning of the 21st century". Online J Issues Nurs. 11 (1): 2. PMID 16629503.
  10. 10.0 10.1 Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH; et al. (2000). "Genetic diversity among Lassa virus strains". J Virol. 74 (15): 6992–7004. PMC 112216. PMID 10888638.
  11. "Wikipedia lassa virus".
  12. 12.0 12.1 Rojek JM, Kunz S (2008). "Cell entry by human pathogenic arenaviruses". Cell Microbiol. 10 (4): 828–35. doi:10.1111/j.1462-5822.2007.01113.x. PMID 18182084.
  13. 13.0 13.1 Drosten C, Kümmerer BM, Schmitz H, Günther S (2003). "Molecular diagnostics of [[viral hemorrhagic fevers]]". Antiviral Res. 57 (1–2): 61–87. PMID 12615304. URL–wikilink conflict (help)
  14. Yun NE, Walker DH (2012). "Pathogenesis of Lassa fever". Viruses. 4 (10): 2031–48. doi:10.3390/v4102031. PMC 3497040. PMID 23202452.
  15. 15.0 15.1 "Wikipedia Natal multimammate mouse".
  16. 16.0 16.1 16.2 "Public Health Image Library (PHIL), Centers for Disease Control and Prevention".


Template:WikiDoc Sources