Retinoblastoma pathophysiology: Difference between revisions

Jump to navigation Jump to search
Jyostna Chouturi (talk | contribs)
Jyostna Chouturi (talk | contribs)
Line 17: Line 17:


==Gross appearance==
==Gross appearance==
: Gross and microscopic appearances of retinoblastoma are identical in both hereditary and sporadic types. Macroscopically, viable tumor cells are found near blood vessels, while zones of necrosis are found in relatively avascular areas.
Gross and microscopic appearances of retinoblastoma are identical in both hereditary and sporadic types. Macroscopically, viable tumor cells are found near blood vessels, while zones of necrosis are found in relatively avascular areas.


==Microscopic appearance==
==Microscopic appearance==

Revision as of 18:45, 4 September 2015

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Retinoblastoma Microchapters

Home

Patient Information

Overview

Historical perspective

Classification

Pathophysiology

Causes

Differentiating Retinoblastoma from other Diseases

Epidemiology & Demographics

Risk Factors

Screening

Natural history, Complications, and Prognosis

Diagnosis

Diagnostic Study of Choice

History & Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Retinoblastoma pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Retinoblastoma pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Retinoblastoma pathophysiology

CDC on Retinoblastoma pathophysiology

Retinoblastoma pathophysiology in the news

Blogs on Retinoblastoma pathophysiology

Directions to Hospitals Treating Retinoblastoma

Risk calculators and risk factors for Retinoblastoma pathophysiology

Overview

Pathology

In children with the heritable genetic form of retinoblastoma there is a mutation on chromosome 13, called the RB1 gene. The genetic codes found in chromosomes control the way in which cells grow and develop within the body. If a portion of the code is missing or altered (mutation) a cancer may develop.

The defective RB1 gene can be inherited from either parent; in some children, however, the mutation occurs in the early stages of fetal development. Inheritance is autosomal dominant with 90% penetrance.

Inherited forms of retinoblastomas are more likely to be bilateral. In addition inherited uni- or bilateral retinoblastomas may be associated with pineoblastoma and other malignant midline supratentorial primitive neuroectodermal tumors (PNET) with a dismal outcome; retinoblastoma that concurs with such a PNET is also known as trilateral retinoblastoma. A recent meta-analysis has shown that survival of trilateral retinoblastoma has increased substantially over the last decades.

The development of retinoblastoma can be explained by the two-hit model. According to the two-hit model, two events are necessary for the retinal cell or cells to develop into tumors. The first mutational event can be inherited (germline or constitutional) and would then be present in all cells in the body. The second “hit” results in the loss of the remaining normal allele (gene) and occurs within a particular retinal cell. In the sporadic, nonheritable form of retinoblastoma, both mutational events occur within a single retinal cell after fertilization (somatic events), resulting in unilateral retinoblastoma.

Several methods have been developed to detect the RB1 gene mutations. Attempts to correlate gene mutations to the stage at presentation have not shown convincing evidence of a correlation.

Somatic amplification of the MYCN oncogene is responsible for some cases of non-hereditary, early-onset, aggressive, unilateral retinoblastoma. Although MYCN amplification accounted for only 1.4% of retinoblastoma cases, researchers identified it in 18% of infants diagnosed at less than 6 months of age. Median age at diagnosis for MYCN retinoblastoma was 4.5 months, compared with 24 months for those who had non-familial unilateral disease with two RB1 gene mutations.

Gross appearance

Gross and microscopic appearances of retinoblastoma are identical in both hereditary and sporadic types. Macroscopically, viable tumor cells are found near blood vessels, while zones of necrosis are found in relatively avascular areas.

Microscopic appearance

Microscopically, both undifferentiated and differentiated elements may be present. Undifferentiated elements appear as collections of small, round cells with hyperchromatic nuclei; differentiated elements include Flexner-Wintersteiner rosettes, Homer-Wright rosettes and fluerettes from photoreceptor differentiation.

See also

References

Template:Nervous tissue tumors


Template:WikiDoc Sources