Waldenström's macroglobulinemia pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:
==Overview==
==Overview==
== Pathogenesis ==
== Pathogenesis ==
It is due to the effects of the [[IgM]] [[paraprotein]], which may cause [[autoimmune]] phenomenon or [[cryoglobulinemia]].  Other symptoms of WM are due to the [[hyperviscosity syndrome]], which is present in 6-20% of patients.This is attributed to the [[IgM]] monoclonal protein increasing the viscosity of the blood.
Waldenström's macroglobulinemia arises from B lymphocytes, which are involved in humoral immunity.  
==Genetics==
==Genetics==
Although believed to be a sporadic disease, studies have shown increased susceptibility within families, indicating a genetic component.<ref>{{Cite journal| last1 = McMaster | first1 = M.| title = Familial Waldenstrom's macroglobulinemia| journal = Seminars in oncology| volume = 30| issue = 2| pages = 146–152| year = 2003| pmid = 12720125| doi = 10.1053/sonc.2003.50063}}</ref><ref>{{Cite journal| last1 = McMaster | first1 = M.| last2 = Goldin | first2 = L.| last3 = Bai | first3 = Y.| last4 = Ter-Minassian | first4 = M.| last5 = Boehringer | first5 = S.| last6 = Giambarresi | first6 = T.| last7 = Vasquez | first7 = L.| last8 = Tucker | first8 = M.| title = Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families| journal = American Journal of Human Genetics| volume = 79| issue = 4| pages = 695–701| year = 2006| pmid = 16960805| pmc = 1592553| doi = 10.1086/507687}}</ref>  A mutation in gene MYD88 has been found to occur frequently in patients.<ref>{{Cite journal | last1 = Treon | first1 = S. P. | last2 = Xu | first2 = L. | last3 = Yang | first3 = G. | last4 = Zhou | first4 = Y. | last5 = Liu | first5 = X. | last6 = Cao | first6 = Y. | last7 = Sheehy | first7 = P. | last8 = Manning | first8 = R. J. | last9 = Patterson | first9 = C. J. | last10 = Tripsas | doi = 10.1056/NEJMoa1200710 | first10 = C. | last11 = Arcaini | first11 = L. | last12 = Pinkus | first12 = G. S. | last13 = Rodig | first13 = S. J. | last14 = Sohani | first14 = A. R. | last15 = Harris | first15 = N. L. | last16 = Laramie | first16 = J. M. | last17 = Skifter | first17 = D. A. | last18 = Lincoln | first18 = S. E. | last19 = Hunter | first19 = Z. R. | title = MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia | journal = New England Journal of Medicine | volume = 367 | issue = 9 | pages = 826–833 | year = 2012 | pmid = 22931316 | pmc = }}</ref>  WM cells show only minimal changes in [[cytogenetic]] and gene expression profiling|gene expression studies.  Their miRNA signature however differs from their normal counterpart. It is therefore believed that [[Epigenetics|epigenetic]] modifications play a crucial role in the disease.<ref>{{Cite journal | doi = 10.1186/1756-8722-3-38 | last1 = Sacco | first1 = A. | last2 = Issa | first2 = G. C. | last3 = Zhang | first3 = Y. | last4 = Liu | first4 = Y. | last5 = Maiso | first5 = P. | last6 = Ghobrial | first6 = I. M. | last7 = Roccaro | first7 = A. M. | title = Epigenetic modifications as key regulators of Waldenstrom's Macroglobulinemia biology | journal = Journal of Hematology & Oncology | volume = 3 | pages = 38 | year = 2010 | pmid = 20929526 | pmc = 2964547}}</ref>
[[Comparative genomic hybridization]] identified the following [[chromosomal abnormalities]]: deletions of 6q23 and 13q14, and gains of 3q13-q28, 6p and 18q.<ref>{{Cite journal| last1 = Braggio | first1 = E.| last2 = Keats | first2 = J. J.| last3 = Leleu | first3 = X.| last4 = Van Wier | first4 = S. V.| last5 = Jimenez-Zepeda | first5 = V. H.| last6 = Schop | first6 = R. F. J.| last7 = Chesi | first7 = M.| last8 = Barrett | first8 = M.| last9 = Stewart | first9 = A. K.| last10 = Dogan | first10 = A.| last11 = Bergsagel | first11 = P. L.| last12 = Ghobrial | first12 = I. M.| last13 = Fonseca | first13 = R.| title = High-Resolution Genomic Analysis in Waldenström's Macroglobulinemia Identifies Disease-Specific and Common Abnormalities with Marginal Zone Lymphomas| journal = Clinical Lymphoma, Myeloma & Leukemia| volume = 9| issue = 1| pages = 39–42| year = 2009| pmid = 19362969| pmc = 3646570| doi = 10.3816/CLM.2009.n.009}}</ref> [[FGFR3]] is overexpressed.<ref>{{Cite journal | last1 = Azab | first1 = A. K. | last2 = Azab | first2 = F. | last3 = Quang | first3 = P. | last4 = Maiso | first4 = P. | last5 = Sacco | first5 = B. | last6 = Ngo | first6 = A. | last7 = Liu | first7 = H. T. | last8 = Zhang | first8 = Y. | last9 = Morgan | first9 = Y. | last10 = Roccaro | first10 = A. M. | last11 = Ghobrial | first11 = I. M. | title = FGFR3 is overexpressed Waldenstrom macroglobulinemia and its inhibition by Dovitinib induces apoptosis, and overcomes stroma-induced proliferation | doi = 10.1158/1078-0432.CCR-10-2772 | journal = Clinical Cancer Research | year = 2011 | pmid = 21521775 | volume=17 | issue=13 | pages=4389–4399}}</ref>
The following signalling pathways have been implicated:
*[[CD154]]/[[CD40]]<ref>http://www.asco.org/ASCO/Abstracts+&+Virtual+Meeting/Abstracts?&vmview=abst_detail_view&confID=26&abstractID=4297</ref>
*[[Akt]]<ref>{{Cite journal| last1 = Leleu | first1 = X.| last2 = Jia | first2 = X.| last3 = Runnels | first3 = J.| last4 = Ngo | first4 = H.| last5 = Moreau | first5 = A.| last6 = Farag | first6 = M.| last7 = Spencer | first7 = J.| last8 = Pitsillides | first8 = C.| last9 = Hatjiharissi | first9 = E.| last10 = Roccaro | first10 = A.| last11 = O'Sullivan | first11 = G.| last12 = McMillin | first12 = D. W.| last13 = Moreno | first13 = D.| last14 = Kiziltepe | first14 = T.| last15 = Carrasco | first15 = R.| last16 = Treon | first16 = S. P.| last17 = Hideshima | first17 = T.| last18 = Anderson | first18 = K. C.| last19 = Lin | first19 = C. P.| last20 = Ghobrial | first20 = I. M.| title = The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia| journal = Blood| volume = 110| issue = 13| pages = 4417–4426| year = 2007| pmid = 17761832| pmc = 2234792| doi = 10.1182/blood-2007-05-092098}}</ref>
*[[ubiquitination]], [[p53]] activation, [[cytochrome c]] release<ref>{{Cite journal| last1 = Mensah-Osman | first1 = E.| last2 = Al-Katib | first2 = A.| last3 = Dandashi | first3 = M.| last4 = Mohammad | first4 = R.| title = XK469, a topo IIbeta inhibitor, induces apoptosis in Waldenstrom's macroglobulinemia through multiple pathways| journal = International journal of oncology| volume = 23| issue = 6| pages = 1637–1644| year = 2003| pmid = 14612935 | doi=10.3892/ijo.23.6.1637}}</ref>
*[[NF-κB]]<ref name="PMID 18334673">{{Cite journal| last1 = Leleu | first1 = X.| last2 = Eeckhoute | first2 = J.| last3 = Jia | first3 = X.| last4 = Roccaro | first4 = A.| last5 = Moreau | first5 = A.| last6 = Farag | first6 = M.| last7 = Sacco | first7 = A.| last8 = Ngo | first8 = H.| last9 = Runnels | first9 = J.| last10 = Melhem | first10 = M. R.| last11 = Burwick | first11 = N.| last12 = Azab | first12 = A.| last13 = Azab | first13 = F.| last14 = Hunter | first14 = Z.| last15 = Hatjiharissi | first15 = E.| last16 = Carrasco | first16 = D. R.| last17 = Treon | first17 = S. P.| last18 = Witzig | first18 = T. E.| last19 = Hideshima | first19 = T.| last20 = Brown | first20 = M.| last21 = Anderson | first21 = K. C.| last22 = Ghobrial | first22 = I. M.| title = Targeting NF-kappaB in Waldenstrom macroglobulinemia| journal = Blood| volume = 111| issue = 10| pages = 5068–5077| year = 2008| pmid = 18334673| pmc = 2384134| doi = 10.1182/blood-2007-09-115170}}</ref><ref>{{Cite journal| last1 = Braggio | first1 = E.| last2 = Keats | first2 = J.| last3 = Leleu | first3 = X.| last4 = Van Wier | first4 = S.| last5 = Jimenez-Zepeda | first5 = V.| last6 = Valdez | first6 = R.| last7 = Schop | first7 = R.| last8 = Price-Troska | first8 = T.| last9 = Henderson | first9 = K.| last10 = Sacco | first10 = A.| last11 = Azab | first11 = F.| last12 = Greipp | first12 = P.| last13 = Gertz | first13 = M.| last14 = Hayman | first14 = S.| last15 = Rajkumar | first15 = S. V.| last16 = Carpten | first16 = J.| last17 = Chesi | first17 = M.| last18 = Barrett | first18 = M.| last19 = Stewart | first19 = A. K.| last20 = Dogan | first20 = A.| last21 = Bergsagel | first21 = P. L.| last22 = Ghobrial | first22 = I. M.| last23 = Fonseca | first23 = R.| title = Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia| journal = Cancer Research| volume = 69| issue = 8| pages = 3579–3588| year = 2009| pmid = 19351844| pmc = 2782932| doi = 10.1158/0008-5472.CAN-08-3701}}</ref>
*[[Wnt signaling pathway|WNT]]/[[beta-catenin]]<ref>{{Cite journal| last1 = Gutiérrez | first1 = N.| last2 = Ocio | first2 = E.| last3 = De Las Rivas | first3 = J.| last4 = Maiso | first4 = P.| last5 = Delgado | first5 = M.| last6 = Fermiñán | first6 = E.| last7 = Arcos | first7 = M.| last8 = Sánchez | first8 = M.| last9 = Hernández | first9 = J.| last10 = San Miguel | first10 = J. F.| title = Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals| journal = Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K| volume = 21| issue = 3| pages = 541–549| year = 2007| pmid = 17252022| doi = 10.1038/sj.leu.2404520}}</ref>
*mTOR<ref>{{Cite journal| last1 = Burwick | first1 = N.| last2 = Roccaro | first2 = A.| last3 = Leleu | first3 = X.| last4 = Ghobrial | first4 = I.| title = Targeted therapies in Waldenström macroglobulinemia| journal = Current opinion in investigational drugs (London, England : 2000)| volume = 9| issue = 6| pages = 631–637| year = 2008| pmid = 18516762}}</ref>
*[[Extracellular signal-regulated kinases|ERK]]<ref name="PMID 18334673"/>
*[[MAPK]]<ref>{{Cite journal| last1 = Chng | first1 = W.| last2 = Schop | first2 = R.| last3 = Price-Troska | first3 = T.| last4 = Ghobrial | first4 = I.| last5 = Kay | first5 = N.| last6 = Jelinek | first6 = D.| last7 = Gertz | first7 = M.| last8 = Dispenzieri | first8 = A.| last9 = Lacy | first9 = M.| last10 = Kyle | first10 = R. A.| last11 = Greipp | first11 = P. R.| last12 = Tschumper | first12 = R. C.| last13 = Fonseca | first13 = R.| last14 = Bergsagel | first14 = P. L.| title = Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma| journal = Blood| volume = 108| issue = 8| pages = 2755–2763| year = 2006| pmid = 16804116| pmc = 1895596| doi = 10.1182/blood-2006-02-005488}}</ref>
*[[Bcl-2]]<ref>{{Cite journal| last1 = Nichols | first1 = G.| last2 = Stein | first2 = C.| title = Modulation of the activity of Bcl-2 in Waldenstrom's macroglobulinemia using antisense oligonucleotides| journal = Seminars in oncology| volume = 30| issue = 2| pages = 297–299| year = 2003| pmid = 12720156| doi = 10.1053/sonc.2003.50045}}</ref>
The protein [[Src (gene)|Src tyrosine kinase]] is overexpressed in Waldenström macroglobulinemia cells compared with control B cells.<ref>{{Cite journal| last1 = Ngo | first1 = H.| last2 = Azab | first2 = A.| last3 = Farag | first3 = M.| last4 = Jia | first4 = X.| last5 = Melhem | first5 = M.| last6 = Runnels | first6 = J.| last7 = Roccaro | first7 = A.| last8 = Azab | first8 = F.| last9 = Sacco | first9 = A.| last10 = Leleu | first10 = X.| last11 = Anderson | first11 = K. C.| last12 = Ghobrial | first12 = I. M.| title = Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia| journal = Clinical cancer research : an official journal of the American Association for Cancer Research| volume = 15| issue = 19| pages = 6035–6041| year = 2009| pmid = 19755386| pmc = 2990685| doi = 10.1158/1078-0432.CCR-09-0718}}</ref>  Inhibition of Src arrests the [[cell cycle]] at phase G<sub>1</sub> and has little effect on the survival of WM or normal cells.
[[MicroRNA]]s involved in Waldenström's:<ref>{{Cite journal| last1 = Vacca | first1 = A.| last2 = Dammacco | first2 = F.| title = MicroRNAs to know in Waldenstrom macroglobulinemia| journal = Blood| volume = 113| issue = 18| pages = 4133–4134| year = 2009| pmid = 19406998| doi = 10.1182/blood-2009-01-199828}}</ref><ref>{{Cite journal| last1 = Roccaro | first1 = A.| last2 = Sacco | first2 = A.| last3 = Chen | first3 = C.| last4 = Runnels | first4 = J.| last5 = Leleu | first5 = X.| last6 = Azab | first6 = F.| last7 = Azab | first7 = A.| last8 = Jia | first8 = X.| last9 = Ngo | first9 = H.| last10 = Melhem | first10 = M. R.| last11 = Burwick | first11 = N.| last12 = Varticovski | first12 = L.| last13 = Novina | first13 = C. D.| last14 = Rollins | first14 = B. J.| last15 = Anderson | first15 = K. C.| last16 = Ghobrial | first16 = I. M.| title = MicroRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia| journal = Blood| volume = 113| issue = 18| pages = 4391–4402| year = 2009| pmid = 19074725| pmc = 2943754| doi = 10.1182/blood-2008-09-178228}}</ref>
* increased expression of miRNAs-363*,<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000764</ref> -206,<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000490</ref> -494,<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003134</ref> -155,<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000681</ref> -184,<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000481</ref> -542–3p.<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003686</ref>
* decreased expression of miRNA-9*.<ref>http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000466</ref>
MicroRNA-155 regulates the proliferation and growth of WM cells in vitro and in vivo, by inhibiting MAPK/ERK, PI3/AKT, and NF-κB pathways.
In WM-cells, [[histone deacetylase]]s and histone-modifying genes are de-regulated.<ref>{{Cite journal| last1 = Roccaro | first1 = A.| last2 = Sacco | first2 = A.| last3 = Jia | first3 = X.| last4 = Azab | first4 = A.| last5 = Maiso | first5 = P.| last6 = Ngo | first6 = H.| last7 = Azab | first7 = F.| last8 = Runnels | first8 = J.| last9 = Quang | first9 = P.| last10 = Ghobrial | first10 = I. M.| title = microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia| journal = Blood| volume = 116| issue = 9| pages = 1506–1514| year = 2010| pmid = 20519629| pmc = 2938840| doi = 10.1182/blood-2010-01-265686}}</ref>
Bone marrow tumour cells express the following antigen targets [[CD20]] (98.3%), [[CD22]] (88.3%), [[CD40]] (83.3%), [[CD52]] (77.4%), [[IgM]] (83.3%), [[MUC1]] core protein (57.8%), and 1D10 (50%).<ref>{{Cite journal| last1 = Treon | first1 = S.| last2 = Kelliher | first2 = A.| last3 = Keele | first3 = B.| last4 = Frankel | first4 = S.| last5 = Emmanouilides | first5 = C.| last6 = Kimby | first6 = E.| last7 = Schlossman | first7 = R.| last8 = Mitsiades | first8 = N.| last9 = Mitsiades | first9 = C.| last10 = Preffer | first10 = F.| last11 = Anderson | first11 = K. C.| title = Expression of serotherapy target antigens in Waldenstrom's macroglobulinemia: therapeutic applications and considerations| journal = Seminars in oncology| volume = 30| issue = 2| pages = 248–252| year = 2003| pmid = 12720146| doi = 10.1053/sonc.2003.50047}}</ref>
==Associated Conditions==
==Associated Conditions==
==Gross Pathology==
==Gross Pathology==

Revision as of 20:22, 3 November 2015

Waldenström's macroglobulinemia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Waldenström's macroglobulinemia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Bone Marrow Aspiration and Biopsy

Electrophoresis and Immunofixation

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Waldenström's macroglobulinemia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Waldenström's macroglobulinemia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Waldenström's macroglobulinemia pathophysiology

CDC on Waldenström's macroglobulinemia pathophysiology

Waldenström's macroglobulinemia pathophysiology in the news

Blogs on Waldenström's macroglobulinemia pathophysiology

Directions to Hospitals Treating Waldenström's macroglobulinemia

Risk calculators and risk factors for Waldenström's macroglobulinemia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Mirdula Sharma, MBBS [2]

Overview

Pathogenesis

Waldenström's macroglobulinemia arises from B lymphocytes, which are involved in humoral immunity.

Genetics

Although believed to be a sporadic disease, studies have shown increased susceptibility within families, indicating a genetic component.[1][2] A mutation in gene MYD88 has been found to occur frequently in patients.[3] WM cells show only minimal changes in cytogenetic and gene expression profiling|gene expression studies. Their miRNA signature however differs from their normal counterpart. It is therefore believed that epigenetic modifications play a crucial role in the disease.[4]

Comparative genomic hybridization identified the following chromosomal abnormalities: deletions of 6q23 and 13q14, and gains of 3q13-q28, 6p and 18q.[5] FGFR3 is overexpressed.[6] The following signalling pathways have been implicated:

The protein Src tyrosine kinase is overexpressed in Waldenström macroglobulinemia cells compared with control B cells.[16] Inhibition of Src arrests the cell cycle at phase G1 and has little effect on the survival of WM or normal cells.

MicroRNAs involved in Waldenström's:[17][18]

MicroRNA-155 regulates the proliferation and growth of WM cells in vitro and in vivo, by inhibiting MAPK/ERK, PI3/AKT, and NF-κB pathways.

In WM-cells, histone deacetylases and histone-modifying genes are de-regulated.[26]

Bone marrow tumour cells express the following antigen targets CD20 (98.3%), CD22 (88.3%), CD40 (83.3%), CD52 (77.4%), IgM (83.3%), MUC1 core protein (57.8%), and 1D10 (50%).[27]

Associated Conditions

Gross Pathology

Micropathology

References

  1. McMaster, M. (2003). "Familial Waldenstrom's macroglobulinemia". Seminars in oncology. 30 (2): 146–152. doi:10.1053/sonc.2003.50063. PMID 12720125.
  2. McMaster, M.; Goldin, L.; Bai, Y.; Ter-Minassian, M.; Boehringer, S.; Giambarresi, T.; Vasquez, L.; Tucker, M. (2006). "Genomewide linkage screen for Waldenstrom macroglobulinemia susceptibility loci in high-risk families". American Journal of Human Genetics. 79 (4): 695–701. doi:10.1086/507687. PMC 1592553. PMID 16960805.
  3. Treon, S. P.; Xu, L.; Yang, G.; Zhou, Y.; Liu, X.; Cao, Y.; Sheehy, P.; Manning, R. J.; Patterson, C. J.; Tripsas, C.; Arcaini, L.; Pinkus, G. S.; Rodig, S. J.; Sohani, A. R.; Harris, N. L.; Laramie, J. M.; Skifter, D. A.; Lincoln, S. E.; Hunter, Z. R. (2012). "MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia". New England Journal of Medicine. 367 (9): 826–833. doi:10.1056/NEJMoa1200710. PMID 22931316.
  4. Sacco, A.; Issa, G. C.; Zhang, Y.; Liu, Y.; Maiso, P.; Ghobrial, I. M.; Roccaro, A. M. (2010). "Epigenetic modifications as key regulators of Waldenstrom's Macroglobulinemia biology". Journal of Hematology & Oncology. 3: 38. doi:10.1186/1756-8722-3-38. PMC 2964547. PMID 20929526.
  5. Braggio, E.; Keats, J. J.; Leleu, X.; Van Wier, S. V.; Jimenez-Zepeda, V. H.; Schop, R. F. J.; Chesi, M.; Barrett, M.; Stewart, A. K.; Dogan, A.; Bergsagel, P. L.; Ghobrial, I. M.; Fonseca, R. (2009). "High-Resolution Genomic Analysis in Waldenström's Macroglobulinemia Identifies Disease-Specific and Common Abnormalities with Marginal Zone Lymphomas". Clinical Lymphoma, Myeloma & Leukemia. 9 (1): 39–42. doi:10.3816/CLM.2009.n.009. PMC 3646570. PMID 19362969.
  6. Azab, A. K.; Azab, F.; Quang, P.; Maiso, P.; Sacco, B.; Ngo, A.; Liu, H. T.; Zhang, Y.; Morgan, Y.; Roccaro, A. M.; Ghobrial, I. M. (2011). "FGFR3 is overexpressed Waldenstrom macroglobulinemia and its inhibition by Dovitinib induces apoptosis, and overcomes stroma-induced proliferation". Clinical Cancer Research. 17 (13): 4389–4399. doi:10.1158/1078-0432.CCR-10-2772. PMID 21521775.
  7. http://www.asco.org/ASCO/Abstracts+&+Virtual+Meeting/Abstracts?&vmview=abst_detail_view&confID=26&abstractID=4297
  8. Leleu, X.; Jia, X.; Runnels, J.; Ngo, H.; Moreau, A.; Farag, M.; Spencer, J.; Pitsillides, C.; Hatjiharissi, E.; Roccaro, A.; O'Sullivan, G.; McMillin, D. W.; Moreno, D.; Kiziltepe, T.; Carrasco, R.; Treon, S. P.; Hideshima, T.; Anderson, K. C.; Lin, C. P.; Ghobrial, I. M. (2007). "The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia". Blood. 110 (13): 4417–4426. doi:10.1182/blood-2007-05-092098. PMC 2234792. PMID 17761832.
  9. Mensah-Osman, E.; Al-Katib, A.; Dandashi, M.; Mohammad, R. (2003). "XK469, a topo IIbeta inhibitor, induces apoptosis in Waldenstrom's macroglobulinemia through multiple pathways". International journal of oncology. 23 (6): 1637–1644. doi:10.3892/ijo.23.6.1637. PMID 14612935.
  10. 10.0 10.1 Leleu, X.; Eeckhoute, J.; Jia, X.; Roccaro, A.; Moreau, A.; Farag, M.; Sacco, A.; Ngo, H.; Runnels, J.; Melhem, M. R.; Burwick, N.; Azab, A.; Azab, F.; Hunter, Z.; Hatjiharissi, E.; Carrasco, D. R.; Treon, S. P.; Witzig, T. E.; Hideshima, T.; Brown, M.; Anderson, K. C.; Ghobrial, I. M. (2008). "Targeting NF-kappaB in Waldenstrom macroglobulinemia". Blood. 111 (10): 5068–5077. doi:10.1182/blood-2007-09-115170. PMC 2384134. PMID 18334673.
  11. Braggio, E.; Keats, J.; Leleu, X.; Van Wier, S.; Jimenez-Zepeda, V.; Valdez, R.; Schop, R.; Price-Troska, T.; Henderson, K.; Sacco, A.; Azab, F.; Greipp, P.; Gertz, M.; Hayman, S.; Rajkumar, S. V.; Carpten, J.; Chesi, M.; Barrett, M.; Stewart, A. K.; Dogan, A.; Bergsagel, P. L.; Ghobrial, I. M.; Fonseca, R. (2009). "Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia". Cancer Research. 69 (8): 3579–3588. doi:10.1158/0008-5472.CAN-08-3701. PMC 2782932. PMID 19351844.
  12. Gutiérrez, N.; Ocio, E.; De Las Rivas, J.; Maiso, P.; Delgado, M.; Fermiñán, E.; Arcos, M.; Sánchez, M.; Hernández, J.; San Miguel, J. F. (2007). "Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals". Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K. 21 (3): 541–549. doi:10.1038/sj.leu.2404520. PMID 17252022.
  13. Burwick, N.; Roccaro, A.; Leleu, X.; Ghobrial, I. (2008). "Targeted therapies in Waldenström macroglobulinemia". Current opinion in investigational drugs (London, England : 2000). 9 (6): 631–637. PMID 18516762.
  14. Chng, W.; Schop, R.; Price-Troska, T.; Ghobrial, I.; Kay, N.; Jelinek, D.; Gertz, M.; Dispenzieri, A.; Lacy, M.; Kyle, R. A.; Greipp, P. R.; Tschumper, R. C.; Fonseca, R.; Bergsagel, P. L. (2006). "Gene-expression profiling of Waldenstrom macroglobulinemia reveals a phenotype more similar to chronic lymphocytic leukemia than multiple myeloma". Blood. 108 (8): 2755–2763. doi:10.1182/blood-2006-02-005488. PMC 1895596. PMID 16804116.
  15. Nichols, G.; Stein, C. (2003). "Modulation of the activity of Bcl-2 in Waldenstrom's macroglobulinemia using antisense oligonucleotides". Seminars in oncology. 30 (2): 297–299. doi:10.1053/sonc.2003.50045. PMID 12720156.
  16. Ngo, H.; Azab, A.; Farag, M.; Jia, X.; Melhem, M.; Runnels, J.; Roccaro, A.; Azab, F.; Sacco, A.; Leleu, X.; Anderson, K. C.; Ghobrial, I. M. (2009). "Src tyrosine kinase regulates adhesion and chemotaxis in Waldenstrom macroglobulinemia". Clinical cancer research : an official journal of the American Association for Cancer Research. 15 (19): 6035–6041. doi:10.1158/1078-0432.CCR-09-0718. PMC 2990685. PMID 19755386.
  17. Vacca, A.; Dammacco, F. (2009). "MicroRNAs to know in Waldenstrom macroglobulinemia". Blood. 113 (18): 4133–4134. doi:10.1182/blood-2009-01-199828. PMID 19406998.
  18. Roccaro, A.; Sacco, A.; Chen, C.; Runnels, J.; Leleu, X.; Azab, F.; Azab, A.; Jia, X.; Ngo, H.; Melhem, M. R.; Burwick, N.; Varticovski, L.; Novina, C. D.; Rollins, B. J.; Anderson, K. C.; Ghobrial, I. M. (2009). "MicroRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia". Blood. 113 (18): 4391–4402. doi:10.1182/blood-2008-09-178228. PMC 2943754. PMID 19074725.
  19. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000764
  20. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000490
  21. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003134
  22. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000681
  23. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000481
  24. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0003686
  25. http://www.mirbase.org/cgi-bin/mirna_entry.pl?acc=MI0000466
  26. Roccaro, A.; Sacco, A.; Jia, X.; Azab, A.; Maiso, P.; Ngo, H.; Azab, F.; Runnels, J.; Quang, P.; Ghobrial, I. M. (2010). "microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia". Blood. 116 (9): 1506–1514. doi:10.1182/blood-2010-01-265686. PMC 2938840. PMID 20519629.
  27. Treon, S.; Kelliher, A.; Keele, B.; Frankel, S.; Emmanouilides, C.; Kimby, E.; Schlossman, R.; Mitsiades, N.; Mitsiades, C.; Preffer, F.; Anderson, K. C. (2003). "Expression of serotherapy target antigens in Waldenstrom's macroglobulinemia: therapeutic applications and considerations". Seminars in oncology. 30 (2): 248–252. doi:10.1053/sonc.2003.50047. PMID 12720146.

Template:WH Template:WS