Paracoccidioidomycosis pathophysiology: Difference between revisions
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
*Rarely in can be transmitted via skin trauma, where the fungus attaches the skin and mucous membranes. <ref name="pmid21738969">{{cite journal| author=Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA| title=Immunology of paracoccidioidomycosis. | journal=An Bras Dermatol | year= 2011 | volume= 86 | issue= 3 | pages= 516-24 | pmid=21738969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21738969 }} </ref> | *Rarely in can be transmitted via skin trauma, where the fungus attaches the skin and mucous membranes. <ref name="pmid21738969">{{cite journal| author=Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA| title=Immunology of paracoccidioidomycosis. | journal=An Bras Dermatol | year= 2011 | volume= 86 | issue= 3 | pages= 516-24 | pmid=21738969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21738969 }} </ref> | ||
*Following transmission, ''Paracoccidiodes spp.'' conidia and mycelial particles invade the terminal brochioles and alveoli and convert into yeast cells. <ref name="pmid21738969">{{cite journal| author=Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA| title=Immunology of paracoccidioidomycosis. | journal=An Bras Dermatol | year= 2011 | volume= 86 | issue= 3 | pages= 516-24 | pmid=21738969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21738969 }} </ref> | *Following transmission, ''Paracoccidiodes spp.'' conidia and mycelial particles invade the terminal brochioles and alveoli and convert into yeast cells. <ref name="pmid21738969">{{cite journal| author=Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA| title=Immunology of paracoccidioidomycosis. | journal=An Bras Dermatol | year= 2011 | volume= 86 | issue= 3 | pages= 516-24 | pmid=21738969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21738969 }} </ref> | ||
*The organisms response to the primo-infection is: bronchoalveolitis, which is normally asymptomatic.<ref name= | *The organisms response to the primo-infection is: bronchoalveolitis, which is normally asymptomatic.<ref name=paper>Vargas J, Vargas R. Paracoccidiodomicosis. ''Rev. enferm. infecc. trop.''2009(1):49-56</ref> | ||
*After the primo-infection, the formation of granulomas start. Granulomas can be inactive for numerous years. <ref name= | *After the primo-infection, the formation of granulomas start. Granulomas can be inactive for numerous years. <ref name=paper>Vargas J, Vargas R. Paracoccidiodomicosis. ''Rev. enferm. infecc. trop.''2009(1):49-56</ref> | ||
*If the infection is active or gets activated, it can spread through lymphatic and hematic routes to other tissues. <ref name="pmid21738969">{{cite journal| author=Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA| title=Immunology of paracoccidioidomycosis. | journal=An Bras Dermatol | year= 2011 | volume= 86 | issue= 3 | pages= 516-24 | pmid=21738969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21738969 }} </ref> | *If the infection is active or gets activated, it can spread through lymphatic and hematic routes to other tissues. <ref name="pmid21738969">{{cite journal| author=Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA| title=Immunology of paracoccidioidomycosis. | journal=An Bras Dermatol | year= 2011 | volume= 86 | issue= 3 | pages= 516-24 | pmid=21738969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21738969 }} </ref> | ||
* Paracoccidioides spp. has developed different mechanisms which avoid getting caught inside mucus and therefore not being eradicated by mucigen cilliary cells. <ref name="pmid26635779">{{cite journal| author=de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva AC, Da Silva Jde F et al.| title=Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. | journal=Front Microbiol | year= 2015 | volume= 6 | issue= | pages= 1319 | pmid=26635779 | doi=10.3389/fmicb.2015.01319 | pmc=PMC4658449 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26635779 }} </ref> | * Paracoccidioides spp. has developed different mechanisms which avoid getting caught inside mucus and therefore not being eradicated by mucigen cilliary cells. <ref name="pmid26635779">{{cite journal| author=de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva AC, Da Silva Jde F et al.| title=Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis. | journal=Front Microbiol | year= 2015 | volume= 6 | issue= | pages= 1319 | pmid=26635779 | doi=10.3389/fmicb.2015.01319 | pmc=PMC4658449 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=26635779 }} </ref> | ||
Line 26: | Line 26: | ||
Paracoccidioides spp. is a nonphotosynthetic eukaryote with a rigid cell wall and organelles very similar to those of higher eukaryotes. Being a dimorphic fungus, it has the ability to grow an oval yeast-like form at 37°C and an elongated mycelial form produced at room temperature. The mycelial and yeast phases differ in their morphology, biochemistry, and ultrastructure. The yeast reproduces by asexualbudding, where daughter cells are borne asynchronously at multiple, random positions across the cell surface. Buds begin by layers of cell wall increasing in optical density at a point that eventually gives rise to the daughter cell. Once the bud has expanded, a cleavage plane develops between the nascent cell and the mother cell. Following dehiscence, the bud scar disappears. In tissue, budding occurs inside the granulomatous center of the disease lesion, as visualized by hematoxylin and eosin (H&E) staining of histologic sections. Nonbudding cells measure 5–15 µm in diameter, whereas those with multiple spherical buds measure from 10–20 µm in diameter. In electron microscopy, cells with multiple buds have been found to have peripherally located nuclei and cytoplasm surrounding a large central vacuole. In the tissue form, yeast cells are larger with thinner walls and a narrower bud base than those of the related dimorphic fungus, Blastomycosis dermatitidis. The yeast-like form contains multiple nuclei, a porous two-layered nuclear membrane, and a thick cell wall rich in fibers, whereas the mycelial phase has thinner cell walls with a thin, electron-dense outer layer.<ref> Paracoccidioides Brasiliensis. Wikipedia.https://en.wikipedia.org/wiki/Paracoccidioides_brasiliensis. Accessed on January 12, 2015</ref> We can differenciate P. lutzii from P. brasiliensis because of its elongated, rod-shaped conidia. <ref> Paracoccidioides spp. LIFE-Leading International Fungal Education.http://www.life-worldwide.org/fungal-diseases/paracoccidioides-brasiliensis. Accessed on January 14, 2015</ref> | Paracoccidioides spp. is a nonphotosynthetic eukaryote with a rigid cell wall and organelles very similar to those of higher eukaryotes. Being a dimorphic fungus, it has the ability to grow an oval yeast-like form at 37°C and an elongated mycelial form produced at room temperature. The mycelial and yeast phases differ in their morphology, biochemistry, and ultrastructure. The yeast reproduces by asexualbudding, where daughter cells are borne asynchronously at multiple, random positions across the cell surface. Buds begin by layers of cell wall increasing in optical density at a point that eventually gives rise to the daughter cell. Once the bud has expanded, a cleavage plane develops between the nascent cell and the mother cell. Following dehiscence, the bud scar disappears. In tissue, budding occurs inside the granulomatous center of the disease lesion, as visualized by hematoxylin and eosin (H&E) staining of histologic sections. Nonbudding cells measure 5–15 µm in diameter, whereas those with multiple spherical buds measure from 10–20 µm in diameter. In electron microscopy, cells with multiple buds have been found to have peripherally located nuclei and cytoplasm surrounding a large central vacuole. In the tissue form, yeast cells are larger with thinner walls and a narrower bud base than those of the related dimorphic fungus, Blastomycosis dermatitidis. The yeast-like form contains multiple nuclei, a porous two-layered nuclear membrane, and a thick cell wall rich in fibers, whereas the mycelial phase has thinner cell walls with a thin, electron-dense outer layer.<ref> Paracoccidioides Brasiliensis. Wikipedia.https://en.wikipedia.org/wiki/Paracoccidioides_brasiliensis. Accessed on January 12, 2015</ref> We can differenciate P. lutzii from P. brasiliensis because of its elongated, rod-shaped conidia. <ref> Paracoccidioides spp. LIFE-Leading International Fungal Education.http://www.life-worldwide.org/fungal-diseases/paracoccidioides-brasiliensis. Accessed on January 14, 2015</ref> | ||
The most important microscopically characteristic is the “ship’s wheel” or “Mickey mouse ears” appereance <ref name= | The most important microscopically characteristic is the “ship’s wheel” or “Mickey mouse ears” appereance <ref name=paper>Vargas J, Vargas R. Paracoccidiodomicosis. ''Rev. enferm. infecc. trop.''2009(1):49-56</ref> | ||
==References== | ==References== | ||
{{reflist|2}} | {{reflist|2}} |
Revision as of 16:37, 15 January 2016
Paracoccidioidomycosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Paracoccidioidomycosis pathophysiology On the Web |
American Roentgen Ray Society Images of Paracoccidioidomycosis pathophysiology |
Risk calculators and risk factors for Paracoccidioidomycosis pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Danitza Lukac
Overview
Spores of Paracoccidioides spp. are transmitted via the respiratory route to the human host. Following transmission, Paracoccidiodes spp. particles invade the terminal bronchioles and alveoli where granulomas are formed, but can be inactive for approximately 40 years. [1] On microscopic histopathological analysis, a pilot's wheel or Mickey mouse ears-like appearance are a characteristic finding of PMC. [2] [3] [4]
Pathogenesis
- Spores of Paracoccidioides spp. are transmitted via the respiratory route to the human host.
- Rarely in can be transmitted via skin trauma, where the fungus attaches the skin and mucous membranes. [1]
- Following transmission, Paracoccidiodes spp. conidia and mycelial particles invade the terminal brochioles and alveoli and convert into yeast cells. [1]
- The organisms response to the primo-infection is: bronchoalveolitis, which is normally asymptomatic.[4]
- After the primo-infection, the formation of granulomas start. Granulomas can be inactive for numerous years. [4]
- If the infection is active or gets activated, it can spread through lymphatic and hematic routes to other tissues. [1]
- Paracoccidioides spp. has developed different mechanisms which avoid getting caught inside mucus and therefore not being eradicated by mucigen cilliary cells. [5]
- The powerful adherence characteristic of the species provides a rapid takeover of host cells and consequently the avoidance of the immune system. [5]
Associated Conditions
Paracoccidioidomycosis is a opportunistic disease in Latin America. Associated conditions are:
- HIV/AIDS: Endemic areas of Paracoccidioides spp. in Brazil have the majority of HIV/AIDS patients.[3] Nevertheless, the incidence of HIV/AIDS and paracoccidioidomycosis is minimum, this may be because the prophylaxis (trimetropin-sulfamethoxazole) used for Pneumocystis jiroveci is the one of the possible treatments for PCM. [3]
- Carcinoma: The majority of patients with carcinoma and PCM, have the same organ or adjacent tissues involved. A risk factor for carcinoma is chronic inflammation with squamous metaplasia, which has been described in 33% cases of PCM in a study. [3]
- Transplants: The small amount of cases may be because of the use of trimetropin-sulfamethoxazole as prophylaxis for Pneumocystis jiroveci, which is one of the possible treatments for PCM. [3]
- Carpal Tunnel Syndrome: Only seen in Immunosupressed patients. [6]
Microscopic Pathology
Paracoccidioides spp. is a nonphotosynthetic eukaryote with a rigid cell wall and organelles very similar to those of higher eukaryotes. Being a dimorphic fungus, it has the ability to grow an oval yeast-like form at 37°C and an elongated mycelial form produced at room temperature. The mycelial and yeast phases differ in their morphology, biochemistry, and ultrastructure. The yeast reproduces by asexualbudding, where daughter cells are borne asynchronously at multiple, random positions across the cell surface. Buds begin by layers of cell wall increasing in optical density at a point that eventually gives rise to the daughter cell. Once the bud has expanded, a cleavage plane develops between the nascent cell and the mother cell. Following dehiscence, the bud scar disappears. In tissue, budding occurs inside the granulomatous center of the disease lesion, as visualized by hematoxylin and eosin (H&E) staining of histologic sections. Nonbudding cells measure 5–15 µm in diameter, whereas those with multiple spherical buds measure from 10–20 µm in diameter. In electron microscopy, cells with multiple buds have been found to have peripherally located nuclei and cytoplasm surrounding a large central vacuole. In the tissue form, yeast cells are larger with thinner walls and a narrower bud base than those of the related dimorphic fungus, Blastomycosis dermatitidis. The yeast-like form contains multiple nuclei, a porous two-layered nuclear membrane, and a thick cell wall rich in fibers, whereas the mycelial phase has thinner cell walls with a thin, electron-dense outer layer.[7] We can differenciate P. lutzii from P. brasiliensis because of its elongated, rod-shaped conidia. [8] The most important microscopically characteristic is the “ship’s wheel” or “Mickey mouse ears” appereance [4]
References
- ↑ 1.0 1.1 1.2 1.3 Fortes MR, Miot HA, Kurokawa CS, Marques ME, Marques SA (2011). "Immunology of paracoccidioidomycosis". An Bras Dermatol. 86 (3): 516–24. PMID 21738969.
- ↑ Paracoccidioidomycosis. Wikipedia.https://en.wikipedia.org/wiki/Paracoccidioidomycosis. Accessed on January 12, 2015
- ↑ 3.0 3.1 3.2 3.3 3.4 Manns B.J, Baylis B.W, Urbanski S.J, Gibb A.P, Rabin H.R. Paracoccidioidomycosis: Case Report and Review. CID. 1996; 23: 1026-1032
- ↑ 4.0 4.1 4.2 4.3 Vargas J, Vargas R. Paracoccidiodomicosis. Rev. enferm. infecc. trop.2009(1):49-56
- ↑ 5.0 5.1 de Oliveira HC, Assato PA, Marcos CM, Scorzoni L, de Paula E Silva AC, Da Silva Jde F; et al. (2015). "Paracoccidioides-host Interaction: An Overview on Recent Advances in the Paracoccidioidomycosis". Front Microbiol. 6: 1319. doi:10.3389/fmicb.2015.01319. PMC 4658449. PMID 26635779.
- ↑ Lytkin MI, Petlenko VP (1988). "[A methodological analysis of the theory of traumatic disease]". Voen Med Zh (4): 11–4. PMID 3414040.
- ↑ Paracoccidioides Brasiliensis. Wikipedia.https://en.wikipedia.org/wiki/Paracoccidioides_brasiliensis. Accessed on January 12, 2015
- ↑ Paracoccidioides spp. LIFE-Leading International Fungal Education.http://www.life-worldwide.org/fungal-diseases/paracoccidioides-brasiliensis. Accessed on January 14, 2015