Acute respiratory distress syndrome screening: Difference between revisions

Jump to navigation Jump to search
Line 9: Line 9:
Several clinical algorithms have been proposed and validated for early recognition of ARDS. No single biomarker is currently specific or sensitive enough to be incorporated into routine clinical practice.
Several clinical algorithms have been proposed and validated for early recognition of ARDS. No single biomarker is currently specific or sensitive enough to be incorporated into routine clinical practice.


Trillo-Alvarez et al. devised the Lung Injury Prediction Study (LIPS) score in an effort to identifie patients at high risk for acute lung injury before ICU admission. Covariates used in model derivation include predisposing conditions ([[trauma]], high-risk [[surgery]], [[sepsis]], [[shock]], [[pneumonia]], [[aspiration]], and [[pancreatitis]]) and risk-modifiers ([[tachypnea]], [[alcohol abuse]], [[hypoalbuminemia]], [[oxygen]] supplementation, [[chemotherapy]], [[diabetes mellitus]], and [[smoking]] history).
Trillo-Alvarez et al. devised the Lung Injury Prediction Study (LIPS) score in an effort to identifie patients at high risk for acute lung injury before ICU admission.<ref>Trillo-Alvarez, C., R. Cartin-Ceba, D. J. Kor, M. Kojicic, R. Kashyap, S. Thakur, L. Thakur, V. Herasevich, M. Malinchoc, and O. Gajic. “Acute Lung Injury Prediction Score: Derivation and Validation in a Population-Based Sample.” European Respiratory Journal 37, no. 3 (March 1, 2011): 604–9. doi:10.1183/09031936.00036810.</ref> Covariates used in model derivation include predisposing conditions ([[trauma]], high-risk [[surgery]], [[sepsis]], [[shock]], [[pneumonia]], [[aspiration]], and [[pancreatitis]]) and risk-modifiers ([[tachypnea]], [[alcohol abuse]], [[hypoalbuminemia]], [[oxygen]] supplementation, [[chemotherapy]], [[diabetes mellitus]], and [[smoking]] history).


==References==
==References==

Revision as of 20:43, 14 July 2016

Acute respiratory distress syndrome Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Acute respiratory distress syndrome from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications, and Prognosis

Diagnosis

Diagnostic study of choice

Diagnostic Criteria

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

Echocardiography

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Mechanical Ventilation Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Acute respiratory distress syndrome screening On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Acute respiratory distress syndrome screening

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Acute respiratory distress syndrome screening

CDC on Acute respiratory distress syndrome screening

Acute respiratory distress syndrome screening in the news

Blogs on Acute respiratory distress syndrome screening

Directions to Hospitals Treating Acute respiratory distress syndrome

Risk calculators and risk factors for Acute respiratory distress syndrome screening

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Brian Shaller, M.D. [2]

Overview

There are no screening tools for ARDS. The best way to make an early diagnosis of ARDS is to apply the diagnostic criteria to any patient with bilateral pulmonary infiltrates on chest x ray, and new/worsening hypoxemia with an increasing supplemental oxygen requirement in whom a potential cause or risk factor for ARDS exists.

Screening

Several clinical algorithms have been proposed and validated for early recognition of ARDS. No single biomarker is currently specific or sensitive enough to be incorporated into routine clinical practice.

Trillo-Alvarez et al. devised the Lung Injury Prediction Study (LIPS) score in an effort to identifie patients at high risk for acute lung injury before ICU admission.[1] Covariates used in model derivation include predisposing conditions (trauma, high-risk surgery, sepsis, shock, pneumonia, aspiration, and pancreatitis) and risk-modifiers (tachypnea, alcohol abuse, hypoalbuminemia, oxygen supplementation, chemotherapy, diabetes mellitus, and smoking history).

References

  1. Trillo-Alvarez, C., R. Cartin-Ceba, D. J. Kor, M. Kojicic, R. Kashyap, S. Thakur, L. Thakur, V. Herasevich, M. Malinchoc, and O. Gajic. “Acute Lung Injury Prediction Score: Derivation and Validation in a Population-Based Sample.” European Respiratory Journal 37, no. 3 (March 1, 2011): 604–9. doi:10.1183/09031936.00036810.

Template:WS Template:WH