Bronchitis laboratory tests: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
{{Bronchitis}}
{{Bronchitis}}
==Overview==
==Overview==
Diagnostic tests are rarely needed to confirm the diagnosis of [[acute bronchitis]]. In very specific condition serologic tests, viral cultures or sputum analyses may be applied. Generally the inflammatory markers such as ''[[CRP]]'' raises during the course of acute bronchitis.<br>Chronic bronchitis is a diagnosis by definition although there are some laboratory findings as the disease advances and causes consequences.
Diagnostic tests are rarely needed to confirm the diagnosis of [[acute bronchitis]]. In very specific conditions, serologic tests, viral cultures or sputum analyses may be performed. Generally, inflammatory markers, such as [[CRP|C-reactive protein]], rise during the course of acute bronchitis. [[Chronic bronchitis]] is diagnosed by definition, although there are some laboratory findings as the disease advances and causes complications.
==Laboratory Findings==
==Laboratory Findings==
===Acute Bronchitis===
===Acute Bronchitis===
Viral cultures, serologic assays, and sputum analyses may be perform when a potentially treatable infection is thought to be circulating or because of epidemiologic purposes<ref name="pmid17108344">{{cite journal |vauthors=Wenzel RP, Fowler AA |title=Clinical practice. Acute bronchitis |journal=N. Engl. J. Med. |volume=355 |issue=20 |pages=2125–30 |year=2006 |pmid=17108344 |doi=10.1056/NEJMcp061493 |url=}}</ref>.
Viral cultures, serologic assays, and sputum analyses may be performed when a potentially treatable infection is thought to be circulating or because of epidemiological purposes.<ref name="pmid17108344">{{cite journal |vauthors=Wenzel RP, Fowler AA |title=Clinical practice. Acute bronchitis |journal=N. Engl. J. Med. |volume=355 |issue=20 |pages=2125–30 |year=2006 |pmid=17108344 |doi=10.1056/NEJMcp061493 |url=}}</ref>
:'''Serologic assays'''
:'''Serologic assays'''
::Nasopharyngeal swab and aspirates to test for ''[[PCR]]'' are available but not widely used<ref name="pmid17108344">{{cite journal |vauthors=Wenzel RP, Fowler AA |title=Clinical practice. Acute bronchitis |journal=N. Engl. J. Med. |volume=355 |issue=20 |pages=2125–30 |year=2006 |pmid=17108344 |doi=10.1056/NEJMcp061493 |url=}}</ref>.
::[[Nasopharyngeal]] swab and aspirates to test for [[PCR]] are available but not widely used.<ref name="pmid17108344">{{cite journal |vauthors=Wenzel RP, Fowler AA |title=Clinical practice. Acute bronchitis |journal=N. Engl. J. Med. |volume=355 |issue=20 |pages=2125–30 |year=2006 |pmid=17108344 |doi=10.1056/NEJMcp061493 |url=}}</ref>
:'''Procalcitonin'''
:'''Procalcitonin'''
::Procalcitonin level is helpful to distinguish bacterial from other causes of inflammation. During bacterial infections the level of ''procalcitonin'' will raise over 0.25 mcg/L and it encourages the physician to prescribe antibiotics<ref name="pmid19738090">{{cite journal |vauthors=Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, Neidert S, Fricker T, Blum C, Schild U, Regez K, Schoenenberger R, Henzen C, Bregenzer T, Hoess C, Krause M, Bucher HC, Zimmerli W, Mueller B |title=Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial |journal=JAMA |volume=302 |issue=10 |pages=1059–66 |year=2009 |pmid=19738090 |doi=10.1001/jama.2009.1297 |url=}}</ref><ref name="pmid18852401">{{cite journal |vauthors=Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, Périat P, Bucher HC, Christ-Crain M |title=Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care |journal=Arch. Intern. Med. |volume=168 |issue=18 |pages=2000–7; discussion 2007–8 |year=2008 |pmid=18852401 |doi=10.1001/archinte.168.18.2000 |url=}}</ref><ref name="pmid21460294">{{cite journal |vauthors=Gilbert DN |title=Procalcitonin as a biomarker in respiratory tract infection |journal=Clin. Infect. Dis. |volume=52 Suppl 4 |issue= |pages=S346–50 |year=2011 |pmid=21460294 |doi=10.1093/cid/cir050 |url=}}</ref>.
::[[Procalcitonin]] level is helpful to distinguish bacterial from other causes of inflammation. During bacterial infections, the level of procalcitonin will rise over 0.25 mg/L and indicates prescription of antibiotics.<ref name="pmid19738090">{{cite journal |vauthors=Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, Neidert S, Fricker T, Blum C, Schild U, Regez K, Schoenenberger R, Henzen C, Bregenzer T, Hoess C, Krause M, Bucher HC, Zimmerli W, Mueller B |title=Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial |journal=JAMA |volume=302 |issue=10 |pages=1059–66 |year=2009 |pmid=19738090 |doi=10.1001/jama.2009.1297 |url=}}</ref><ref name="pmid18852401">{{cite journal |vauthors=Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, Périat P, Bucher HC, Christ-Crain M |title=Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care |journal=Arch. Intern. Med. |volume=168 |issue=18 |pages=2000–7; discussion 2007–8 |year=2008 |pmid=18852401 |doi=10.1001/archinte.168.18.2000 |url=}}</ref><ref name="pmid21460294">{{cite journal |vauthors=Gilbert DN |title=Procalcitonin as a biomarker in respiratory tract infection |journal=Clin. Infect. Dis. |volume=52 Suppl 4 |issue= |pages=S346–50 |year=2011 |pmid=21460294 |doi=10.1093/cid/cir050 |url=}}</ref>  
===Chronic Bronchitis===
===Chronic Bronchitis===
:'''Pulse Oximetry'''
:'''Pulse Oximetry'''
::* Though [[pulse oximetry]] is not as accurate in predicting the percentage [[oxygen saturation]] as [[arterial blood gas]] analysis. However, it gives a quick estimate of patient status when combined with the clinical status.
::* Although [[pulse oximetry]] is not as accurate in predicting the percent [[oxygen saturation]] as [[arterial blood gas]] analysis, it gives a quick estimate of patient status when considered with the clinical status.
:'''Arterial Blood Gas (ABG)'''
:'''Arterial Blood Gas (ABG)'''
::* ABG may show changes of [[hypoxemia]] and [[hypercapnia]] depending on the severity of disease.
::* [[Arterial blood gas|ABG]] may show changes of [[hypoxemia]] and [[hypercapnia]] depending on the severity of disease.
:'''Hematocrit'''
:'''Hematocrit'''
::* COPD patients may have hypoxemia due to the chronic underlying disease. This chronic hypoxemia may lead to [[polycythemia]](hematocrit > 55% in men or 50% in women is diagnostic of polycythemia.
::* COPD patients may have hypoxemia due to the chronic underlying disease. This chronic hypoxemia may lead to [[polycythemia]].
::* A sputum sample showing [[neutrophil granulocyte]]s (inflammatory white blood cells) and [[microbiological culture|culture]] showing that has pathogenic microorganisms such as [[Streptococcus|Streptococcus spp.]]
::** [[Hematocrit]] > 55% in men or 50% in women is diagnostic of polycythemia.
:'''Culture'''
::* A [[sputum]] sample showing [[neutrophil granulocyte]]s and [[microbiological culture|culture]] showing pathogenic microorganisms such as [[Streptococcus|Streptococcus spp.]]
:'''Alpha 1 Antitrypsin Levels'''<ref name="pmid14522813">{{cite journal |vauthors= |title=American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency |journal=Am. J. Respir. Crit. Care Med. |volume=168 |issue=7 |pages=818–900 |year=2003 |pmid=14522813 |doi=10.1164/rccm.168.7.818 |url=}}</ref>
:'''Alpha 1 Antitrypsin Levels'''<ref name="pmid14522813">{{cite journal |vauthors= |title=American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency |journal=Am. J. Respir. Crit. Care Med. |volume=168 |issue=7 |pages=818–900 |year=2003 |pmid=14522813 |doi=10.1164/rccm.168.7.818 |url=}}</ref>
::* Serum alpha1 antitrypsin levels below the protective threshold value (ie, 3-7 mmol/L) lead to severe form of [[emphysema]]
::* Serum [[alpha 1 antitrypsin]] levels below the protective threshold value (i.e. 3-7 mmol/L) may lead to a severe form of [[emphysema]]
::* 95% cases are due to the severe variant the Z allele present in these patients.
::* 95% cases are due to the severe variant the Z allele present in these patients.
::* Specific phenotyping, and [[genetic]] counselling is reserved for patients in whom serum levels are 7-11 mmol/L.
::* Specific phenotyping, and [[genetic]] counseling is reserved for patients in whom serum levels are 7-11 mmol/L.


==References==
==References==

Revision as of 20:33, 3 October 2016

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Seyedmahdi Pahlavani, M.D. [2]

Bronchitis Main page

Patient Information

Overview

Causes

Classification

Acute bronchitis
Chronic bronchitis

Differential Diagnosis

Overview

Diagnostic tests are rarely needed to confirm the diagnosis of acute bronchitis. In very specific conditions, serologic tests, viral cultures or sputum analyses may be performed. Generally, inflammatory markers, such as C-reactive protein, rise during the course of acute bronchitis. Chronic bronchitis is diagnosed by definition, although there are some laboratory findings as the disease advances and causes complications.

Laboratory Findings

Acute Bronchitis

Viral cultures, serologic assays, and sputum analyses may be performed when a potentially treatable infection is thought to be circulating or because of epidemiological purposes.[1]

Serologic assays
Nasopharyngeal swab and aspirates to test for PCR are available but not widely used.[1]
Procalcitonin
Procalcitonin level is helpful to distinguish bacterial from other causes of inflammation. During bacterial infections, the level of procalcitonin will rise over 0.25 mg/L and indicates prescription of antibiotics.[2][3][4]

Chronic Bronchitis

Pulse Oximetry
Arterial Blood Gas (ABG)
Hematocrit
  • COPD patients may have hypoxemia due to the chronic underlying disease. This chronic hypoxemia may lead to polycythemia.
    • Hematocrit > 55% in men or 50% in women is diagnostic of polycythemia.
Culture
Alpha 1 Antitrypsin Levels[5]
  • Serum alpha 1 antitrypsin levels below the protective threshold value (i.e. 3-7 mmol/L) may lead to a severe form of emphysema
  • 95% cases are due to the severe variant the Z allele present in these patients.
  • Specific phenotyping, and genetic counseling is reserved for patients in whom serum levels are 7-11 mmol/L.

References

  1. 1.0 1.1 Wenzel RP, Fowler AA (2006). "Clinical practice. Acute bronchitis". N. Engl. J. Med. 355 (20): 2125–30. doi:10.1056/NEJMcp061493. PMID 17108344.
  2. Schuetz P, Christ-Crain M, Thomann R, Falconnier C, Wolbers M, Widmer I, Neidert S, Fricker T, Blum C, Schild U, Regez K, Schoenenberger R, Henzen C, Bregenzer T, Hoess C, Krause M, Bucher HC, Zimmerli W, Mueller B (2009). "Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial". JAMA. 302 (10): 1059–66. doi:10.1001/jama.2009.1297. PMID 19738090.
  3. Briel M, Schuetz P, Mueller B, Young J, Schild U, Nusbaumer C, Périat P, Bucher HC, Christ-Crain M (2008). "Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care". Arch. Intern. Med. 168 (18): 2000–7, discussion 2007–8. doi:10.1001/archinte.168.18.2000. PMID 18852401.
  4. Gilbert DN (2011). "Procalcitonin as a biomarker in respiratory tract infection". Clin. Infect. Dis. 52 Suppl 4: S346–50. doi:10.1093/cid/cir050. PMID 21460294.
  5. "American Thoracic Society/European Respiratory Society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency". Am. J. Respir. Crit. Care Med. 168 (7): 818–900. 2003. doi:10.1164/rccm.168.7.818. PMID 14522813.


Template:WikiDoc Sources