Human papillomavirus pathophysiology: Difference between revisions

Jump to navigation Jump to search
Aysha Aslam (talk | contribs)
Aysha Aslam (talk | contribs)
No edit summary
Line 18: Line 18:
*Early proteins: E1, E2, E3, E4, E5, E6 and E7 proteins are synthesized primarily in middle layers, for reactivation of replication process in the differentiated cells.   
*Early proteins: E1, E2, E3, E4, E5, E6 and E7 proteins are synthesized primarily in middle layers, for reactivation of replication process in the differentiated cells.   
*Late proteins: L1, L2 proteins are transcribed in the most superficial layers for [[virion]] assesmbly, release and reinfection, as they code for [[capsid]] proteins.
*Late proteins: L1, L2 proteins are transcribed in the most superficial layers for [[virion]] assesmbly, release and reinfection, as they code for [[capsid]] proteins.
<br clear="left"/>
[[Image:HPV-16 genome organization.png|240px|thumb|left|Genome organization of human papillomavirus type 16, one of the subtypes known to cause cervical cancer. (E1-E7 early genes, L1-L2 late genes: capsid)]]
<br clear="left"/>
   
   
==Pathogenesis of HPV induced cancers==
==Pathogenesis of HPV induced cancers==
Line 58: Line 61:
| 6, 7, 11, 16, 32
| 6, 7, 11, 16, 32
|}
|}
<br clear="left"/>
[[Image:HPV-16 genome organization.png|240px|thumb|left|Genome organization of human papillomavirus type 16, one of the subtypes known to cause cervical cancer. (E1-E7 early genes, L1-L2 late genes: capsid)]]
<br clear="left"/>
=== Respiratory Papillomatosis ===
HPV types 6 and 11 can cause a rare condition known as recurrent [[Laryngeal papillomatosis|respiratory papillomatosis]], in which warts form on the larynx or other areas of the respiratory tract.<ref>{{cite journal |author=Wu R, Sun S, Steinberg BM |title=Requirement of STAT3 activation for differentiation of mucosal stratified squamous epithelium |journal=Mol. Med. |volume=9 |issue=3-4 |pages=77-84 |year=2003 |pmid=12865943 |doi=}}</ref><ref name=Sinal_2005 />


These warts can recur frequently, may require repetitive surgery, may interfere with breathing, and in extremely rare cases can progress to cancer.<ref>{{cite journal |author=Moore CE, Wiatrak BJ, McClatchey KD, ''et al'' |title=High-risk human papillomavirus types and squamous cell carcinoma in patients with respiratory papillomas |journal=Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery |volume=120 |issue=5 |pages=698-705 |year=1999 |pmid=10229596 |doi=10.1053/hn.1999.v120.a91773}}</ref><ref name=Sinal_2005 />


==References==
==References==


{{Reflist|2}}
{{Reflist|2}}
[[Category:Disease]]
 
[[Category:Infectious disease]]
[[Category:Sexually transmitted infections]]
[[Category:Viruses]]
[[Category:Viral diseases]]
[[Category:Disease]]
[[Category:Gynecology]]
[[Category:Needs overview]]
{{WH}}
{{WH}}
{{WS}}
{{WS}}

Revision as of 20:17, 13 October 2016

Sexually transmitted diseases Main Page

Human papillomavirus Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Human papillomavirus from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Treatment

Medical Therapy

Surgery

Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Human papillomavirus pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Human papillomavirus pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Human papillomavirus pathophysiology

CDC on Human papillomavirus pathophysiology

Human papillomavirus pathophysiology in the news

Blogs on Human papillomavirus pathophysiology

Directions to Hospitals Treating Human papillomavirus

Risk calculators and risk factors for Human papillomavirus pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Aysha Anwar, M.B.B.S[2]

Overview

Pathophysiology

Transmission

  • Human papilloma virus is usually transmitted via the sexual route to the human host.
  • Different types of HPV has a predilection for different types of epithelial tissue.

HPV life cycle

  • HPV life cycle is linked to epithelial differentiation and maturation of host keratinocytes, with transcription of specific gene products at every level.
  • HPV primarily infects basal cell layer of stratified squamous keratinised epithelium.
  • Following transmission, the HPV uses the microabrasions to enter the basal stem cells via tissue specific heparan sulfate proteoglycans through clathrin-mediated endocytosis and/or caveolin-mediated endocytosis depending on the type of HPV.
  • It than undergoes viral uncoating and viral DNA genome is than transported to nucleus maintaining a low copy number 10-200 viral genomes per cell (episome form)
  • A sophisticated transcriptional cascade then occurs as the host keratinocyte begins to divide and become increasingly differentiated in the upper layers of the epithelium.
  • HPV uses host DNA replicative machinery to multiply as it lacks DNA polymerase activity.
  • Specific viral genes are transcribed at every level of keratinocyte differention.
  • Early proteins: E1, E2, E3, E4, E5, E6 and E7 proteins are synthesized primarily in middle layers, for reactivation of replication process in the differentiated cells.
  • Late proteins: L1, L2 proteins are transcribed in the most superficial layers for virion assesmbly, release and reinfection, as they code for capsid proteins.


Genome organization of human papillomavirus type 16, one of the subtypes known to cause cervical cancer. (E1-E7 early genes, L1-L2 late genes: capsid)


Pathogenesis of HPV induced cancers

The pathogenesis of HPV infection causing cancer is mainly linked to high risk types of HPV (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68). Following HPV proteins play a significant role in the development of cancers associated with HPV.

E6 and E7 proteins

E6 and E7 protein products of HPV interact with two important cell cycle regulatory protiens, P53 and Rb proteins of host cell, causing unchecked cellular replication accumulating mutations leading to cancer.

  • Inhibition of P53
P53 protein is a cellular check point at G0/G1 to S phase of cell cycle and is also responsible for cell apoptosis for unrepaired DNA mutations. E6 protein binds P53 which results in degradation of P53, leaving cell without any check for mutations and unregulated cell
growth.
  • Inhibition of Rb protein
Rb protein is negative regulator of cell growth. It binds E2F transcription factor which controls DNA replication and cyclin protein induced entering of cell into S phase of cell cycle. E7 protein binds Rb/E2F, releasing E2F from the inhibitory effect of Rb causing increased cyclin induced entry of cell into S phase of cell cycle, resulting in increased replication rate of cells accumulating mutations.

HPV-Induced Diseases

Disease HPV type
Common warts 2, 7
Plantar warts 1, 2, 4
Flat cutaneous warts 3, 10
Anogenital warts 6, 11, 42, 43, 44, 55 and others
Genital malignancies 16, 18, 31, 33, 35, 39, 45, 51
Epidermodysplasia verruciformis more than 15 types
Focal epithelial hyperplasia (oral) 13, 32
Oral papillomas 6, 7, 11, 16, 32


References

Template:WH Template:WS