Familial hyperchylomicronemia: Difference between revisions

Jump to navigation Jump to search
Vishal (talk | contribs)
No edit summary
Vishal (talk | contribs)
Line 192: Line 192:




==Treatment==
The main therapeutical approach of Type I hyperlipoproteinemia is based on diet treatment to reduce triglyceride (TG) levels.20 TG-lowering drugs, such as niacin and fibrates, are not effective in patients with type I hyperlipoproteinemia.21 Orlistat, a gastric lipase inhibitor that reduces fat availability, has been used successfully in the treatment of moderate and severe LPL deficiency.22 and 23 Recently, gene replacement using alipogene tiparvovec has been the very first therapy approved by European Medicines Agency for the treatment of type I hyperlipoproteinemia.24 Alipogene tiparvovec introduces a human LPL gene into the body, resulting in the production of functional LPL. 25 However, this gene therapy is indicated only in adults with genetic diagnosis of LPL deficiency who have had recurrent pancreatitis and with a residual lipoprotein mass in the circulation. 24 and 26 Thus, careful genetic screening and functional testing of LPL are required to identify patients eligible for this new therapeutic approach.
Pregnancy Management
During pregnancy in a woman with LPL deficiency, extreme dietary fat restriction to less than two grams per day during the second and third trimester with close monitoring of plasma triglyceride concentration can result in delivery of a normal infant with normal plasma concentrations of essential fatty acids [Al-Shali et al 2002].
One woman with LPL deficiency delivered a normal child following a one-gram fat diet and treatment with gemfibrozil (600 mg 1x/day) [Tsai et al 2004]. Despite concerns about the possibility of essential fatty acid deficiency in the newborn, normal essential fatty acids were found in cord blood, as were normal levels of fibrate metabolites.


==Prevention==
==Prevention==

Revision as of 13:41, 7 November 2016

WikiDoc Resources for Familial hyperchylomicronemia

Articles

Most recent articles on Familial hyperchylomicronemia

Most cited articles on Familial hyperchylomicronemia

Review articles on Familial hyperchylomicronemia

Articles on Familial hyperchylomicronemia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Familial hyperchylomicronemia

Images of Familial hyperchylomicronemia

Photos of Familial hyperchylomicronemia

Podcasts & MP3s on Familial hyperchylomicronemia

Videos on Familial hyperchylomicronemia

Evidence Based Medicine

Cochrane Collaboration on Familial hyperchylomicronemia

Bandolier on Familial hyperchylomicronemia

TRIP on Familial hyperchylomicronemia

Clinical Trials

Ongoing Trials on Familial hyperchylomicronemia at Clinical Trials.gov

Trial results on Familial hyperchylomicronemia

Clinical Trials on Familial hyperchylomicronemia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Familial hyperchylomicronemia

NICE Guidance on Familial hyperchylomicronemia

NHS PRODIGY Guidance

FDA on Familial hyperchylomicronemia

CDC on Familial hyperchylomicronemia

Books

Books on Familial hyperchylomicronemia

News

Familial hyperchylomicronemia in the news

Be alerted to news on Familial hyperchylomicronemia

News trends on Familial hyperchylomicronemia

Commentary

Blogs on Familial hyperchylomicronemia

Definitions

Definitions of Familial hyperchylomicronemia

Patient Resources / Community

Patient resources on Familial hyperchylomicronemia

Discussion groups on Familial hyperchylomicronemia

Patient Handouts on Familial hyperchylomicronemia

Directions to Hospitals Treating Familial hyperchylomicronemia

Risk calculators and risk factors for Familial hyperchylomicronemia

Healthcare Provider Resources

Symptoms of Familial hyperchylomicronemia

Causes & Risk Factors for Familial hyperchylomicronemia

Diagnostic studies for Familial hyperchylomicronemia

Treatment of Familial hyperchylomicronemia

Continuing Medical Education (CME)

CME Programs on Familial hyperchylomicronemia

International

Familial hyperchylomicronemia en Espanol

Familial hyperchylomicronemia en Francais

Business

Familial hyperchylomicronemia in the Marketplace

Patents on Familial hyperchylomicronemia

Experimental / Informatics

List of terms related to Familial hyperchylomicronemia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Vishal Devarkonda, M.B.B.S[2]


Synonyms and keywords: Type I hyperlipoproteinemia, Burger-Grutz syndrome, primary hyperlipoproteinemia, lipoprotein lipase deficiency, LPL deficiency, idiopathic hyperlipemia, essential hyperlipemia, familial hyperlipemia, lipase D deficiency, hyperlipoproteinemia type IA, familial chylomicronemia, familial lipoprotein lipase deficiency, and familial hyperchylomicronemia.


Overview

This very rare form is due to a deficiency of lipoprotein lipase (LPL) or altered apolipoprotein C2, resulting in elevated chylomicron which are the particles that transfer fatty acids from the digestive tract to the liver. Lipoprotein lipase is also responsible for the initial breakdown of endogenously made triacylglycerides in the form of very low density lipoprotein (VLDL). As such, one would expect a defect in LPL to also result in elevated VLDL. Its prevalence is 0.1% of the population.

Classification

Type 1A

It occurs due to deficiency of lipoprotein lipase enzyme.

Type 1B

Altered apolipoprotein C2 causes type 1B hyperlipoproteinemia

Type 1C

Presence of LPL inhibitor is the cause of type 1C hyperlipoproteinemia

Historical Perspective

Pathophysiology

  • Type I hyperlipoproteinemia is a rare autosomal recessive disorder of lipoprotein metabolism. [1][2][3]

Pathogenesis

  • Lipoprotein lipase(LPL) hydrolysis Triglyceride-rich lipoproteins (TG) such as chylomicrons and very low-density lipoproteins. It catalyzes, the removal of TG from bloodstream generating free fatty acids for tissues.
  • For full enzymatic activity, LPL requires following cofactors:-
    • Apolipoprotein C-II and apolipoprotein A-V that are LPL activators
    • Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein
    • Lipase maturation factor 1
  • Development of Type I hyperlipoproteinemia is the result of functional mutations in one of all these genes result in type I hyperlipoproteinemia.

Familial lipoprotein lipase inhibitor

    • Familial lipoprotein lipase inhibitor seems to be inherited as an autosomal dominant trait.
    • Postheparin plasma LPL activity is decreased, adipose tissue LPL activity is elevated, and plasma levels of functional apoC-I1 are normal.
  • Functionally inactive or absent lipoprotein lipase emzyme, results in massive accumulation of chylomicrons, with extremely high level of plasma triglycerides.

Causes

The cause of type 1 hyperlipidemia remains genetic.

Differential diagnosis

Diseases Laboratory Findings Physical Examination History and symptoms other findings
Familial combined hyperlipidemia
Monogenic familial hypertriglyceridemia
Secondary causes of hypertriglyceridemia
Diabetes mellitus
Paraproteinemic disorders
Alcohol usage
Estrogen thearapy
Glucocorticoids
Isotretinoin
Antihypertensive agents

Brunzell & Deeb 2001

Epidemiology and Demographics

Epidemiology

  • The disease has been described in all races. The prevalence is much higher in some areas of Quebec, Canada, as a result of a founder effect.
  • The prevalence of familial LPL deficiency is approximately one in 1,000,000 in the general US population.

Demographics

Age

  • 25% of affected children develop symptoms before one year of age.
  • Majority develop symptoms before ten years of age.
  • Few individuals develop symptoms, at the time of pregnancy.

Gender

  • Males and females are equally affected.

Screening

  • There are no screening guidelines for Familial hyperchylomicronemia .
  • Evaluation of Relatives at Risk.It is appropriate to measure plasma triglyceride concentration in at-risk sibs during infancy; early diagnosis and implementation of dietary fat intake restriction can prevent symptoms and related medical complications.

Natural History, Complications, and Prognosis

Natural History

If left untreated, pancreatitis can develop into a chronic condition that can damage the pancreas and, in rare cases, be life-threatening.

Complications

  • Pancreatitis and recurrent episodes of abdominal pain may develop.
  • Xanthomas are not usually painful unless they are rubbed a lot.

Prognosis

  • People with this condition who follow a very low-fat diet can live into adulthood.

Diagnosis

  • Presumptive diagnosis can be made, when an infant presents with a history of failure to thrive or recurrent abdominal pain, with an documented high fasting plasma triglyceride concentration.
  • Diagnosis is confirmed by low or absent LPL enzyme activity in an assay system that contains either normal or
  • Diagnosis of familial lipoprotein lipase deficiency is confirmed by detection of low or absent LPL enzyme activity in an assay system that contains either normal plasma or apoprotein C-II excluding hepatic lipase.

History and symptoms

Symptoms may include any of the following

  • Abdominal pain (may appear as colic in infancy)
  • Loss of appetite
  • Nausea
  • Pain in the muscles and bones (musculoskeletal pain)
  • Vomiting
  • Small yellow papules localized over the trunk, buttocks, knees, and extensor surfaces of the arms

Physical examination

Signs of this condition include:

Enlarged liver and spleen Failure to thrive in infancy Fatty deposits in the skin (xanthomas) High triglyceride levels in the blood Pale retinas and white-colored blood vessels in the retinas Pancreatitis that keeps returning Yellowing of the eyes and skin (jaundice

Laboratory finding

Laboratory finding
Phenotype Lipoprotein(s)

Elevated

Serum total

cholesterol

Serum

triglycerides

Plasma

appearance

Postheparin

lipolytic

activity

Glucose

tolerance

Carbohydrate

inducibility

Fat tolerance
Hyperlipoproteinemia type 1 Chylomicrons Normal to

elevated

Elevated Creamy Decreased Normal May be abnormal Markedly abnormal



Prevention

Genetic counseling.

Familial lipoprotein lipase deficiency is inherited in an autosomal recessive manner. Each sib of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier. Carrier testing for at-risk relatives and prenatal testing for pregnancies at increased risk are possible if the pathogenic variants in the family are known.

Prevention of Primary Manifestations

Medical nutrition therapy. Maintaining the plasma triglyceride concentration at less than 2000 mg/dL keeps the individual with familial LPL deficiency free of symptoms. This can be accomplished by restriction of dietary fat to no more than 20 g/day or 15% of total energy intake.

Prevention of Secondary Complications

Prevention of acute recurrent pancreatitis decreases the risk of development of diabetes mellitus. Fat malabsorption is very rare.



  1. Pingitore P, Lepore SM, Pirazzi C, Mancina RM, Motta BM, Valenti L; et al. (2016). "Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia". J Clin Lipidol. 10 (4): 816–23. doi:10.1016/j.jacl.2016.02.015. PMID 27578112.
  2. Young SG, Zechner R (2013). "Biochemistry and pathophysiology of intravascular and intracellular lipolysis". Genes Dev. 27 (5): 459–84. doi:10.1101/gad.209296.112. PMC 3605461. PMID 23475957.
  3. Pasalić D, Jurcić Z, Stipancić G, Ferencak G, Leren TP, Djurovic S; et al. (2004). "Missense mutation W86R in exon 3 of the lipoprotein lipase gene in a boy with chylomicronemia". Clin Chim Acta. 343 (1–2): 179–84. doi:10.1016/j.cccn.2004.01.029. PMID 15115692.

Template:WikiDoc Sources