Hypobetalipoproteinemia: Difference between revisions
Line 6: | Line 6: | ||
==Overview== | ==Overview== | ||
It is a rare disease caused by mutation in the APOB gene or less commonly in the PCSK9 gene, characteristic findings include low plasma level of total cholesterol, low LDL C, and Apo B below the 5th percentile when compared to the normal population. | |||
==Historical Perspective== | ==Historical Perspective== |
Revision as of 15:57, 15 November 2016
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Aravind Kuchkuntla, M.B.B.S[2]
Synonyms and keywords: Familial hypobetalipoproteinemia, FHBL, normotriglyceridemic hypobetalipoproteinemia
Overview
It is a rare disease caused by mutation in the APOB gene or less commonly in the PCSK9 gene, characteristic findings include low plasma level of total cholesterol, low LDL C, and Apo B below the 5th percentile when compared to the normal population.
Historical Perspective
- In 1960, Salt reported absence of betalipoprotein in the plasma of a patient associated with very low cholesterol levels in the parents. Low cholesterol levels in the parents differentiates it from abetalipoproteinemia[1].
Pathophysiology
Pathogenesis
Genetics
- Mutation in the APOB gene on chromosome 2p24 which codes for apolipoprotein B.
- Familial hypobetalipoproteinemia-2 is caused by mutation in the ANGPTL3 gene (604774) on chromosome 1p31.
Natural History, complications and Prognosis
Diagnosis
History and Physical
Laboratory Results
Treatment=
Medical Therapy
Surgical Therapy
Prevention
Hypobetalipoproteinemia is a rare autosomal dominant genetic disorder causing abnormally low levels of LDL cholesterol and apolipoprotein B.[2] It is thought to be caused by a mutation in apolipoprotein B.[3] The patient can have low LDL level and simultaneously have high levels of HDL cholesterol. Typically in hypobtalipoproteinemia, plasma cholesterol levels will be around 80-120 mg/dL, LDL cholesterol will be around 50-80 mg/dL, and longevity can be expected with good nutrition. Affected individuals can be either homozygous or heterozygous, the latter being most commonly asymptomatic.[3]
Normotriglyceridemic hypobetalipoproteinemia, formally called normotriglyceridemic abetalipoproteinemia, is a condition characterized by absence of LDLs and apoB100 and normal triglyceride-rich lipoproteins.[4][5]
References
- ↑ SALT HB, WOLFF OH, LLOYD JK, FOSBROOKE AS, CAMERON AH, HUBBLE DV (1960). "On having no beta-lipoprotein. A syndrome comprising a-beta-lipoproteinaemia, acanthocytosis, and steatorrhoea". Lancet. 2 (7146): 325–9. PMID 13745738.
- ↑ Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C; et al. (2010). "Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia". N Engl J Med. 363 (23): 2220–7. doi:10.1056/NEJMoa1002926. PMC 3008575. PMID 20942659.
- ↑ 3.0 3.1 Schonfeld G, Lin X, Yue P (2005). "Familial hypobetalipoproteinemia: genetics and metabolism". Cell Mol Life Sci. 62 (12): 1372–8. doi:10.1007/s00018-005-4473-0. PMID 15818469.
- ↑ Harano Y, Kojima H, Nakano T, Harada M, Kashiwagi A, Nakajima Y; et al. (1989). "Homozygous hypobetalipoproteinemia with spared chylomicron formation". Metabolism. 38 (1): 1–7. PMID 2909827.
- ↑ Herbert PN, Hyams JS, Bernier DN, Berman MM, Saritelli AL, Lynch KM; et al. (1985). "Apolipoprotein B-100 deficiency. Intestinal steatosis despite apolipoprotein B-48 synthesis". J Clin Invest. 76 (2): 403–12. doi:10.1172/JCI111986. PMC 423826. PMID 4031057.
- ↑ Biemer JJ, McCammon RE (1975). "The genetic relationship of abetalipoproteinemia and hypobetalipoproteinemia: a report of the occurence of both diseases within the same family". J Lab Clin Med. 85 (4): 556–65. PMID 164511.