Hypolipoproteinemia: Difference between revisions

Jump to navigation Jump to search
Tarek Nafee (talk | contribs)
Tarek Nafee (talk | contribs)
Line 6: Line 6:


==Overview==
==Overview==
Hypolipoproteinemia (also known as ''hypolipidemia or low lipoproteins'') is defined as presence of low levels of one or more type of [[lipoproteins]]. Hypolipoproteinemia may be caused by primary genetic disorders or as a secondary complication of underlying medical conditions. After ruling out common secondary causes of hypolipoproteinemia, the clinician must begin the work-up for primary causes.
Hypolipoproteinemia (also known as ''hypolipidemia or low lipoproteins'') is defined as presence of low levels of one or more type of [[lipoproteins]]. Hypolipoproteinemia may present as primary genetic disorders or as a secondary complication of underlying medical conditions. After ruling out common secondary causes of hypolipoproteinemia, the clinician must begin the work-up for primary causes.


Patients with hypoproteinemia may present with low LDL, or low HDL. Patients with low LDL commonly present with diarrhea, vomitting, or failure to thrive (in infanthood). Patients with primary low HDL are usually asymptomatic however; patients diagnosed with low HDL due to Tangier's disease, Apo-A1 deficiency, or LCAT deficiency have specific clinical findings such as corneal opacities, xanthomas, and renal failure. Work up for primary hypolipoproteinemias begins with careful examination of the lipid panel and may involve screening of family members. Confirmatory gene sequencing is the gold standard diagnostic test for all hypolipoproteinemias.
Patients with hypoproteinemia may present with low LDL, or low HDL. Patients with low LDL commonly present with diarrhea, vomitting, or failure to thrive (in infanthood). Patients with primary low HDL are usually asymptomatic however; patients diagnosed with low HDL due to Tangier's disease, Apo-A1 deficiency, or LCAT deficiency have specific clinical findings such as corneal opacities, xanthomas, and renal failure. Work up for primary hypolipoproteinemias begins with careful examination of the lipid panel and may involve screening of family members. Confirmatory gene sequencing is the gold standard diagnostic test for all hypolipoproteinemias.

Revision as of 19:52, 21 November 2016

Lipid Disorders Main Page

Overview

Causes

Classification

Abetalipoproteinemia
Hypobetalipoproteinemia
Familial hypoalphalipoproteinemia
LCAT Deficiency
Chylomicron retention disease
Tangier disease
Familial combined hypolipidemia

Differential Diagnosis

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohamed Moubarak, M.D. [2]; Aravind Kuchkuntla, M.B.B.S[3]; Tarek Nafee, M.D. [4]

Synonyms and keywords: Hypolipidemia, low lipoprotein

Overview

Hypolipoproteinemia (also known as hypolipidemia or low lipoproteins) is defined as presence of low levels of one or more type of lipoproteins. Hypolipoproteinemia may present as primary genetic disorders or as a secondary complication of underlying medical conditions. After ruling out common secondary causes of hypolipoproteinemia, the clinician must begin the work-up for primary causes.

Patients with hypoproteinemia may present with low LDL, or low HDL. Patients with low LDL commonly present with diarrhea, vomitting, or failure to thrive (in infanthood). Patients with primary low HDL are usually asymptomatic however; patients diagnosed with low HDL due to Tangier's disease, Apo-A1 deficiency, or LCAT deficiency have specific clinical findings such as corneal opacities, xanthomas, and renal failure. Work up for primary hypolipoproteinemias begins with careful examination of the lipid panel and may involve screening of family members. Confirmatory gene sequencing is the gold standard diagnostic test for all hypolipoproteinemias.

Synopsis

After ruling out secondary causes of hypolipoproteinemia, clinicians must explore primary causes of the disease. The table below provides a brief synopsis of the lipid profile findings in several of the most common primary hypolipidemic disorders:

Abetalipoprotienemia Familial Homozygous

Hypobetalipoproteinemia

Familial Heterozygous

Hypobetalipoproteinemia

PCSK9 deficiency Chylomicron Retention

Disease

Familial Combined

Hypolipidemia

LDL C ↓↓↓ (0) ↓↓↓ ↓↓ ↓↓
Apo B ↓↓↓( 0) ↓↓↓ N ↓↓ N
TG ↓↓↓ ↓↓↓ N
TC ↓↓↓ ↓↓↓ ↓↓
HDL ↓↓ ↓↓ N N ↓↓ ↓↓
VLDL ↓↓ ↓↓ N ↓↓
Apo A1 ↓↓ ↓↓ N ↓↓ N

Classification

Shown below is an algorithm depicting the classification of hypolipoproteinemia into primary and secondary.

 
 
 
 
 
 
Hypolipoproteinemia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Primary
(Genetic)
 
 
 
 
 
 
 
 
 
 
 
 
 
Secondary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abetalipoproteinemia
Apolipoprotein 1 deficiency
Chylomicron retention disease
Familial combined hypolipidemia
Hypobetalipoproteinemia
LCAT deficiency
Primary alphalipoproteinemia
PCSK9 deficiency
Tangier disease
 
 
 
 
 
 
 
 
 
 
 
 
 
Anemia
Criticial illness
Chronic inflammation
Chronic liver disease
Hyperthyroidism
Infection
Malabsorption
Malignancy

Diagnostic Approach to Hypolipoproteinemias

Low LDL Diagnostic Algorithm

The following Algorithm may be used to diagnose patients with low LDL hypolipoproteinemias:

 
 
 
 
 
Low LDL C <5th percentile
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Rule out secondary causes of low LDL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lipid panel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Normal Triglycerides
 
 
 
 
Low Triglycerides
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chlyomicron retention disease
(Confirm with gene sequencing)
 
 
 
 
Screen the lipid panel of the patient's parents
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Normal Parental Lipid Panel
 
 
If Parental Lipid Panel <50% of Normal on:
*LDL
*Total Cholesterol
*Triglycerides
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypobetalipoproteinemia
(Confirm with gene sequencing)
 
 
Abetalipoproteinemia
(Confirm with gene sequencing)

Low HDL Diagnostic Features

Familial LCAT

Deficiency

Fish Eye

Disease

Homozygous Tangier

Disease

Heterozygous Tangier

Disease

Gene Defect LCAT LCAT ABCA1 ABCA1
Inheritance Autosomal Recessive Autosomal Recessive Autosomal Recessive Autosomal Recessive
Pathogenesis
  • Loss of alpha and beta LCAT function
  • Failure of cholesterol ester formation.
Loss of alpha function only

Pre beta-1 HDL fails to picks up free cholesterol from cells due to mutation in ABCA1 transporter.

Similar to homozygous
Clinical Features
  • Annular corneal opacity
  • Anaemia
  • Progressive renal disease with proteinuria
  • Corneal opacities only
  • Normal renal function
  • Large yellow-orange tonsils
  • Dense central corneal opacity
  • Relapsing and remitting course of neuropathy
Asymptomatic
Lipid Panel
  • Elevated Free cholesterol
  • HDL-C < 10 mg/dL
  • Low Apo A1 and Apo A2
  • Elevated Apo E and Triglycerides
  • Low LDL C
  • Elevated free cholesterol
  • HDL C < 27 mg/dL
  • Apo A1<30mg/dl and low Apo A2
  • Elevated Apo E and Triglycerides
  • Normal LDL and VLDL
  • HDL < 5% of normal
  • Apo A1 < 1% of normal
  • LDL < 40% of normal
  • HDL C, Apo A1 and LDL 50% less than normal.
2D Gel Electrophoresis Pre β-1 and α-4 HDL, LDL with β mobility due to Lipoprotien-X Pre β-1and α-4 HDL with normal pre-β LDL. Only preβ-1 HDL present
  • Lack of large α-1 and α-2 HDL particles
  • Normal preβ-1 HDL

References


Template:WH Template:WS