Intracerebral hemorrhage surgery: Difference between revisions

Jump to navigation Jump to search
Sara Mehrsefat (talk | contribs)
Created page with "__NOTOC__ {{Intracerebral hemorrhage}} {{CMG}}; {{AE}} {{SaraM}} ==Overview== ==Surgery== ==References== {{reflist|2}} Category:Neurology Category:Cardiology C..."
 
Sara Mehrsefat (talk | contribs)
Line 7: Line 7:


==Surgery==
==Surgery==
*The indications for surgery in patients with ICH vary with the site of the bleed
===Timing of surgery===
*Timing of surgery for ICH remains controversial. Randomized prospective trials to date have reported on a wide time frame for surgery that ranges from 4 to 96 hours after symptom onset. Ultra-early [[craniotomy]] (within 4 hours from ictus) was associated with an increased risk of rebleeding in a study that involved 24 patients.<ref name=Mendelow>Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.</ref><ref name=Gregson-x>Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, Karimi A, Shaw MD, Barer DH; STICH investigators. Early surgery versus initial conservative treatment in patients with spontane- ous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–397. doi: 10.1016/S0140-6736(05)17826-X.</ref><ref name=Pantazis>Pantazis G, Tsitsopoulos P, Mihas C, Katsiva V, Stavrianos V, Zymaris S. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: a prospective randomized study. Surg Neurol. 2006;66:492–501.</ref><ref name=Delcourt>Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, Wang J, Parsons MW, Liu G, Anderson CS; INTERACT1 Investigators. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–319. doi: 10.1212/ WNL.0b013e318260cbba.</ref>
===Surgical techniques===
====Open craniotomy====
Open [[craniotomy]] is the most widely studied surgical techniques in patients with supratentorial ICH [1]. Other methods include endoscopic hemorrhage aspiration, use of fibrinolytic therapy to dissolve the clot followed by aspiration, and CT-guided stereotactic aspiration. Studies of these less invasive techniques are in progress.<ref name=Wang>Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, Sander JW. Minimally invasive craniopuncture therapy vs. conservative treat- ment for spontaneous intracerebral hemorrhage: results from a ran- domized clinical trial in China. Int J Stroke. 2009;4:11–16. doi: 10.1111/j.1747-4949.2009.00239.x.</ref><ref name=Mould>Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF; MISTIE Investigators. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intrace- rebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–634. doi: 10.1161/STROKEAHA.111.000411.</ref>
====Minimally invasive surgical evacuation of ICH====
Several recent randomized studies have shown minimally invasive aspiration associated with better outcomes with less invasive approaches compared to standard craniotomies.<ref name=Wang>Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, Sander JW. Minimally invasive craniopuncture therapy vs. conservative treat- ment for spontaneous intracerebral hemorrhage: results from a ran- domized clinical trial in China. Int J Stroke. 2009;4:11–16. doi: 10.1111/j.1747-4949.2009.00239.x.</ref><ref name=Fung>Fung C, Murek M, Z’Graggen WJ, Krähenbühl AK, Gautschi OP, Schucht P, Gralla J, Schaller K, Arnold M, Fischer U, Mattle HP, Raabe A, Beck J. Decompressive hemicraniectomy in patients with supratento- rial intracerebral hemorrhage. Stroke. 2012;43:3207–3211. doi: 10.1161/ STROKEAHA.112.666537.</ref>
===Site of the bleed===
====Supratentorial hemorrhage====
Early hematoma evacuation has not been shown to be beneficial in the 2 latest randomized trials, and it is still unclarified whether surgery may benefit specific groups of patients with supratentorial ICH. Therefore, the routine evacuation of supratentorial ICH in the first 96 hours is not recommended.<ref name=Mendelow>Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.</ref><ref name=Gregson-AD>Mendelow AD, Gregson BA, Mitchell PM, Murray GD, Rowan EN, Gholkar AR; STICH II Investigators. Surgical Trial in Lobar Intracerebral Haemorrhage (STICH II) protocol. Trials. 2011;12:124. doi: 10.1186/1745-6215-12-124.</ref>
Standard craniotomy should be considered in following conditions:
*Hematoma near the cortical surface (lobar clots >30 mL within 1 cm of the surface)
*Recent onset of hemorrhage
*Ongoing clinical deterioration
*Involvement of the nondominant hemisphere
Craniotomy should not be considered in following conditions:
*Patients who are either fully alert or deeply comatose.
====Posterior fossa hemorrhage====
Because of the narrow confines of the [[posterior fossa]], [[hydrocephalus|obstructive hydrocephalus]] and local mass effect on the [[brainstem]] can result in rapid deterioration of the patient with cerebellar hemorrhage.
*Surgical decompression in patients whom cerebellar hemorrhage is associated with [[brainstem]] compression or [[hydrocephalus]] or patients with cerebellar hemorrhages >3 cm in diameteris are associated with good outcomes.<ref name=Da-Pian>Da Pian R, Bazzan A, Pasqualin A. Surgical versus medical treatment of spontaneous posterior fossa haematomas: a cooperative study on 205 cases. Neurol Res. 1984;6:145–151.</ref>
*Controlling ICP via means other than hematoma evacuation, such as VC insertion alone, is considered insufficient, is not recommended, and may actually be harmful.<ref name=Van> van Loon J, Van Calenbergh F, Goffin J, Plets C. Controversies in the management of spontaneous cerebellar haemorrhage: a consecutive series of 49 cases and review of the literature. Acta Neurochir (Wien). 1993;122:187–193.</ref>
====Intraventricular hemorrhage====
*using of ventricular catheter (VC) alone may be ineffective because of difficulty maintaining catheter patency and the slow removal of intraventricular blood.<ref name=Huttner>Huttner HB, Köhrmann M, Berger C, Georgiadis D, Schwab S. Influence of intraventricular hemorrhage and occlusive hydrocephalus on the long-term outcome of treated patients with basal ganglia hemorrhage: a case-control study. J Neurosurg. 2006;105:412–417. doi: 10.3171/jns.2006.105.3.412.</ref>
*There are now reports of alternative procedures for IVH, such as endoscopic surgical evacuation and [[ventriculostomy]].


==References==
==References==

Revision as of 03:17, 30 November 2016

Intracerebral hemorrhage Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Stroke from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Emergency Diagnosis and Assessment

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

CT

MRI

Other Imaging Findings

Treatment

Early Assessment

Management

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

AHA/ASA Guidelines for the Management of Spontaneous Intracerebral Hemorrhage (2015)

Management of ICH

AHA/ASA Guideline Recommendation for the Primary Prevention of Stroke (2014)

Primary Prevention of Stroke

Case Studies

Case #1

Intracerebral hemorrhage surgery On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Intracerebral hemorrhage surgery

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Intracerebral hemorrhage surgery

CDC on Intracerebral hemorrhage surgery

Intracerebral hemorrhage surgery in the news

Blogs on Intracerebral hemorrhage surgery

Directions to Hospitals Treating Stroke

Risk calculators and risk factors for Intracerebral hemorrhage surgery

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sara Mehrsefat, M.D. [2]

Overview

Surgery

  • The indications for surgery in patients with ICH vary with the site of the bleed

Timing of surgery

  • Timing of surgery for ICH remains controversial. Randomized prospective trials to date have reported on a wide time frame for surgery that ranges from 4 to 96 hours after symptom onset. Ultra-early craniotomy (within 4 hours from ictus) was associated with an increased risk of rebleeding in a study that involved 24 patients.[1][2][3][4]

Surgical techniques

Open craniotomy

Open craniotomy is the most widely studied surgical techniques in patients with supratentorial ICH [1]. Other methods include endoscopic hemorrhage aspiration, use of fibrinolytic therapy to dissolve the clot followed by aspiration, and CT-guided stereotactic aspiration. Studies of these less invasive techniques are in progress.[5][6]

Minimally invasive surgical evacuation of ICH

Several recent randomized studies have shown minimally invasive aspiration associated with better outcomes with less invasive approaches compared to standard craniotomies.[5][7]

Site of the bleed

Supratentorial hemorrhage

Early hematoma evacuation has not been shown to be beneficial in the 2 latest randomized trials, and it is still unclarified whether surgery may benefit specific groups of patients with supratentorial ICH. Therefore, the routine evacuation of supratentorial ICH in the first 96 hours is not recommended.[1][8]

Standard craniotomy should be considered in following conditions:

  • Hematoma near the cortical surface (lobar clots >30 mL within 1 cm of the surface)
  • Recent onset of hemorrhage
  • Ongoing clinical deterioration
  • Involvement of the nondominant hemisphere

Craniotomy should not be considered in following conditions:

  • Patients who are either fully alert or deeply comatose.

Posterior fossa hemorrhage

Because of the narrow confines of the posterior fossa, obstructive hydrocephalus and local mass effect on the brainstem can result in rapid deterioration of the patient with cerebellar hemorrhage.

  • Surgical decompression in patients whom cerebellar hemorrhage is associated with brainstem compression or hydrocephalus or patients with cerebellar hemorrhages >3 cm in diameteris are associated with good outcomes.[9]
  • Controlling ICP via means other than hematoma evacuation, such as VC insertion alone, is considered insufficient, is not recommended, and may actually be harmful.[10]

Intraventricular hemorrhage

  • using of ventricular catheter (VC) alone may be ineffective because of difficulty maintaining catheter patency and the slow removal of intraventricular blood.[11]
  • There are now reports of alternative procedures for IVH, such as endoscopic surgical evacuation and ventriculostomy.

References

  1. 1.0 1.1 Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM; STICH II Investigators. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial [published cor- rection appears in Lancet. 2013;382:396]. Lancet. 2013;382:397–408. doi: 10.1016/S0140-6736(13)60986-1.
  2. Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, Karimi A, Shaw MD, Barer DH; STICH investigators. Early surgery versus initial conservative treatment in patients with spontane- ous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365:387–397. doi: 10.1016/S0140-6736(05)17826-X.
  3. Pantazis G, Tsitsopoulos P, Mihas C, Katsiva V, Stavrianos V, Zymaris S. Early surgical treatment vs conservative management for spontaneous supratentorial intracerebral hematomas: a prospective randomized study. Surg Neurol. 2006;66:492–501.
  4. Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, Heeley EL, Wang J, Parsons MW, Liu G, Anderson CS; INTERACT1 Investigators. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–319. doi: 10.1212/ WNL.0b013e318260cbba.
  5. 5.0 5.1 Wang WZ, Jiang B, Liu HM, Li D, Lu CZ, Zhao YD, Sander JW. Minimally invasive craniopuncture therapy vs. conservative treat- ment for spontaneous intracerebral hemorrhage: results from a ran- domized clinical trial in China. Int J Stroke. 2009;4:11–16. doi: 10.1111/j.1747-4949.2009.00239.x.
  6. Mould WA, Carhuapoma JR, Muschelli J, Lane K, Morgan TC, McBee NA, Bistran-Hall AJ, Ullman NL, Vespa P, Martin NA, Awad I, Zuccarello M, Hanley DF; MISTIE Investigators. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intrace- rebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44:627–634. doi: 10.1161/STROKEAHA.111.000411.
  7. Fung C, Murek M, Z’Graggen WJ, Krähenbühl AK, Gautschi OP, Schucht P, Gralla J, Schaller K, Arnold M, Fischer U, Mattle HP, Raabe A, Beck J. Decompressive hemicraniectomy in patients with supratento- rial intracerebral hemorrhage. Stroke. 2012;43:3207–3211. doi: 10.1161/ STROKEAHA.112.666537.
  8. Mendelow AD, Gregson BA, Mitchell PM, Murray GD, Rowan EN, Gholkar AR; STICH II Investigators. Surgical Trial in Lobar Intracerebral Haemorrhage (STICH II) protocol. Trials. 2011;12:124. doi: 10.1186/1745-6215-12-124.
  9. Da Pian R, Bazzan A, Pasqualin A. Surgical versus medical treatment of spontaneous posterior fossa haematomas: a cooperative study on 205 cases. Neurol Res. 1984;6:145–151.
  10. van Loon J, Van Calenbergh F, Goffin J, Plets C. Controversies in the management of spontaneous cerebellar haemorrhage: a consecutive series of 49 cases and review of the literature. Acta Neurochir (Wien). 1993;122:187–193.
  11. Huttner HB, Köhrmann M, Berger C, Georgiadis D, Schwab S. Influence of intraventricular hemorrhage and occlusive hydrocephalus on the long-term outcome of treated patients with basal ganglia hemorrhage: a case-control study. J Neurosurg. 2006;105:412–417. doi: 10.3171/jns.2006.105.3.412.


Template:WS Template:WH