Heparin-induced thrombocytopenia pathophysiology: Difference between revisions
Shyam Patel (talk | contribs) No edit summary |
Shyam Patel (talk | contribs) |
||
Line 10: | Line 10: | ||
'''Normal physiology:''' | '''Normal physiology:''' | ||
* Under normal circumstances, [[platelet factor 4]] (PF4) is | * Under normal circumstances, [[platelet factor 4]] (PF4) is synthesized by platelet precursors called [[megakaryocytes]].<ref name="pmid20059332">{{cite journal| author=Arepally GM, Ortel TL| title=Heparin-induced thrombocytopenia. | journal=Annu Rev Med | year= 2010 | volume= 61 | issue= | pages= 77-90 | pmid=20059332 | doi=10.1146/annurev.med.042808.171814 | pmc=4153429 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20059332 }} </ref> It is stored in the alpha granules of platelets. It is a positively charged protein that functions to antagonize the effects of heparin-like proteins like heparin sulfate and chondroitin sulfate on the cell surface.<ref name="pmid23714311">{{cite journal| author=Lee GM, Arepally GM| title=Diagnosis and management of heparin-induced thrombocytopenia. | journal=Hematol Oncol Clin North Am | year= 2013 | volume= 27 | issue= 3 | pages= 541-63 | pmid=23714311 | doi=10.1016/j.hoc.2013.02.001 | pmc=3668315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23714311 }} </ref> PF4 is located intracellularly, but upon platelet activation, PF4 is released. Since is it a positively charged protein, it binds to negatively charged glycosaminoglycans, such as heparan sulfate. | ||
* Under normal circumstances, antithrombin is then displaced from heparan sulfate, resulting in the normal desired coagulation.<ref name="pmid20059332">{{cite journal| author=Arepally GM, Ortel TL| title=Heparin-induced thrombocytopenia. | journal=Annu Rev Med | year= 2010 | volume= 61 | issue= | pages= 77-90 | pmid=20059332 | doi=10.1146/annurev.med.042808.171814 | pmc=4153429 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20059332 }} </ref> PF4 thus contributes to the release of antithrombin from the cell surface, promoting clotting (platelet plugging). | |||
* Under normal circumstances, there are no endogenous antibodies to PF4. | * Under normal circumstances, there are no endogenous antibodies to PF4. | ||
* Under normal circumstances, heparin administration results in activation of antithrombin III, which in turn inhibits factors II, IX, X, XI, XII, and XIII. The allows for adequate anticoagulation for patients. | * Under normal circumstances, exogenous heparin administration results in activation of antithrombin III, which in turn inhibits factors II, IX, X, XI, XII, and XIII. The allows for adequate anticoagulation for patients. | ||
'''Pathophysiology:''' | '''Pathophysiology:''' | ||
* This begins with heparin exposure, which can trigger the release of PF4 from endothelial surfaces. Heparin can then form ultra-large multimolecular complexes with PF4 via electrostatic forces.<ref name="pmid22315270">{{cite journal| author=Linkins LA, Dans AL, Moores LK, Bona R, Davidson BL, Schulman S et al.| title=Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. | journal=Chest | year= 2012 | volume= 141 | issue= 2 Suppl | pages= e495S-e530S | pmid=22315270 | doi=10.1378/chest.11-2303 | pmc=3278058 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22315270 }} </ref> | * This begins with heparin exposure, which can trigger the release of PF4 from endothelial surfaces. Heparin can then form ultra-large multimolecular complexes with PF4 via electrostatic forces.<ref name="pmid22315270">{{cite journal| author=Linkins LA, Dans AL, Moores LK, Bona R, Davidson BL, Schulman S et al.| title=Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. | journal=Chest | year= 2012 | volume= 141 | issue= 2 Suppl | pages= e495S-e530S | pmid=22315270 | doi=10.1378/chest.11-2303 | pmc=3278058 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22315270 }} </ref> | ||
* These complexes of heparin and PF4 can induce production of antibodies, | * These complexes of heparin and PF4 can induce production of antibodies, since this large complex serves as an unfamiliar antigen to the body.<ref name="pmid23714311">{{cite journal| author=Lee GM, Arepally GM| title=Diagnosis and management of heparin-induced thrombocytopenia. | journal=Hematol Oncol Clin North Am | year= 2013 | volume= 27 | issue= 3 | pages= 541-63 | pmid=23714311 | doi=10.1016/j.hoc.2013.02.001 | pmc=3668315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23714311 }} </ref> IgG antibodies are typically produced to the multimolecular complexes.<ref name="pmid22315270">{{cite journal| author=Linkins LA, Dans AL, Moores LK, Bona R, Davidson BL, Schulman S et al.| title=Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. | journal=Chest | year= 2012 | volume= 141 | issue= 2 Suppl | pages= e495S-e530S | pmid=22315270 | doi=10.1378/chest.11-2303 | pmc=3278058 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22315270 }} </ref> | ||
* Immune complexes eventually form, consisting of heparin, PF4 and IgG.<ref name="pmid23714311">{{cite journal| author=Lee GM, Arepally GM| title=Diagnosis and management of heparin-induced thrombocytopenia. | journal=Hematol Oncol Clin North Am | year= 2013 | volume= 27 | issue= 3 | pages= 541-63 | pmid=23714311 | doi=10.1016/j.hoc.2013.02.001 | pmc=3668315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23714311 }} </ref> The [[crystallized fragment]] domain, or ([[Fc]]) domain of IgG can bind to Fc receptors, such as FC gamma RII, on the surface of a variety of immune cells, including platelets, neutrophils, and monocytes. | * Immune complexes eventually form, consisting of heparin, PF4 and IgG.<ref name="pmid23714311">{{cite journal| author=Lee GM, Arepally GM| title=Diagnosis and management of heparin-induced thrombocytopenia. | journal=Hematol Oncol Clin North Am | year= 2013 | volume= 27 | issue= 3 | pages= 541-63 | pmid=23714311 | doi=10.1016/j.hoc.2013.02.001 | pmc=3668315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23714311 }} </ref> The [[crystallized fragment]] domain, or ([[Fc]]) domain of IgG can bind to Fc receptors, such as FC gamma RII, on the surface of a variety of immune cells, including platelets, neutrophils, and monocytes. | ||
* Binding of IgG from the large complexes into the Fc gamma RII receptors triggers activation of the target cells containing the receptors and eventual release of platelet microparticles. This results in production of thrombin, which is highly thrombogenic and contributes to clot formation.<ref name="pmid23714311">{{cite journal| author=Lee GM, Arepally GM| title=Diagnosis and management of heparin-induced thrombocytopenia. | journal=Hematol Oncol Clin North Am | year= 2013 | volume= 27 | issue= 3 | pages= 541-63 | pmid=23714311 | doi=10.1016/j.hoc.2013.02.001 | pmc=3668315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23714311 }} </ref> | * Binding of IgG from the large complexes into the Fc gamma RII receptors triggers activation of the target cells containing the receptors and eventual release of platelet microparticles. This results in production of thrombin, which is highly thrombogenic and contributes to clot formation.<ref name="pmid23714311">{{cite journal| author=Lee GM, Arepally GM| title=Diagnosis and management of heparin-induced thrombocytopenia. | journal=Hematol Oncol Clin North Am | year= 2013 | volume= 27 | issue= 3 | pages= 541-63 | pmid=23714311 | doi=10.1016/j.hoc.2013.02.001 | pmc=3668315 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23714311 }} </ref> |
Revision as of 20:33, 9 July 2017
Heparin-induced thrombocytopenia |
Differentiating Heparin-induced thrombocytopenia from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Heparin-induced thrombocytopenia pathophysiology On the Web |
American Roentgen Ray Society Images of Heparin-induced thrombocytopenia pathophysiology |
Heparin-induced thrombocytopenia pathophysiology in the news |
Directions to Hospitals Treating Heparin-induced thrombocytopenia |
Risk calculators and risk factors for Heparin-induced thrombocytopenia pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S. [2] Shyam Patel [3]
Overview
Heparin-induced thrombocytopenia is diagnosed when the platelet count falls by > 50% typically after 5-10 days of heparin therapy. It is caused by antibodies to complexes between heparin and platelet factor 4 (PF4). These antibody complexes stimulates the procoagulant pathways due to activation of platelet and endothelium. Ultimately, this leads to thrombotic complications in the venous and arterial systems.
Pathophysiology
An understanding of the pathophysiology of HIT requires an understanding of normal physiology.
Normal physiology:
- Under normal circumstances, platelet factor 4 (PF4) is synthesized by platelet precursors called megakaryocytes.[1] It is stored in the alpha granules of platelets. It is a positively charged protein that functions to antagonize the effects of heparin-like proteins like heparin sulfate and chondroitin sulfate on the cell surface.[2] PF4 is located intracellularly, but upon platelet activation, PF4 is released. Since is it a positively charged protein, it binds to negatively charged glycosaminoglycans, such as heparan sulfate.
- Under normal circumstances, antithrombin is then displaced from heparan sulfate, resulting in the normal desired coagulation.[1] PF4 thus contributes to the release of antithrombin from the cell surface, promoting clotting (platelet plugging).
- Under normal circumstances, there are no endogenous antibodies to PF4.
- Under normal circumstances, exogenous heparin administration results in activation of antithrombin III, which in turn inhibits factors II, IX, X, XI, XII, and XIII. The allows for adequate anticoagulation for patients.
Pathophysiology:
- This begins with heparin exposure, which can trigger the release of PF4 from endothelial surfaces. Heparin can then form ultra-large multimolecular complexes with PF4 via electrostatic forces.[3]
- These complexes of heparin and PF4 can induce production of antibodies, since this large complex serves as an unfamiliar antigen to the body.[2] IgG antibodies are typically produced to the multimolecular complexes.[3]
- Immune complexes eventually form, consisting of heparin, PF4 and IgG.[2] The crystallized fragment domain, or (Fc) domain of IgG can bind to Fc receptors, such as FC gamma RII, on the surface of a variety of immune cells, including platelets, neutrophils, and monocytes.
- Binding of IgG from the large complexes into the Fc gamma RII receptors triggers activation of the target cells containing the receptors and eventual release of platelet microparticles. This results in production of thrombin, which is highly thrombogenic and contributes to clot formation.[2]
- Widespread systemic thrombosis can lead to significant morbidity and mortality.
Reference
- ↑ 1.0 1.1 Arepally GM, Ortel TL (2010). "Heparin-induced thrombocytopenia". Annu Rev Med. 61: 77–90. doi:10.1146/annurev.med.042808.171814. PMC 4153429. PMID 20059332.
- ↑ 2.0 2.1 2.2 2.3 Lee GM, Arepally GM (2013). "Diagnosis and management of heparin-induced thrombocytopenia". Hematol Oncol Clin North Am. 27 (3): 541–63. doi:10.1016/j.hoc.2013.02.001. PMC 3668315. PMID 23714311.
- ↑ 3.0 3.1 Linkins LA, Dans AL, Moores LK, Bona R, Davidson BL, Schulman S; et al. (2012). "Treatment and prevention of heparin-induced thrombocytopenia: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines". Chest. 141 (2 Suppl): e495S–e530S. doi:10.1378/chest.11-2303. PMC 3278058. PMID 22315270.