Pheochromocytoma overview: Difference between revisions
No edit summary |
|||
Line 16: | Line 16: | ||
==Classification== | ==Classification== | ||
Pheochromocytoma may be classified by nature into benign and malignant and can be classified by spread into local, regional and metastatic and can be classified by origin into familial, | Pheochromocytoma may be classified by nature into benign and malignant and can be classified by spread into local, regional and metastatic and can be classified by origin into familial, nonfamilial, and sporadic. | ||
==Causes== | ==Causes== | ||
Line 22: | Line 22: | ||
==Differentiating Pheochromocytoma from other Diseases== | ==Differentiating Pheochromocytoma from other Diseases== | ||
Pheochromocytoma must be differentiated from [[ | Pheochromocytoma must be differentiated from other causes of paroxysmal hypertension including severe paroxysmal hypertension (Pseudopheochromocytoma), [[Panic disorder|panic disorder,]] [[Factitious hypertension]], [[carcinoid syndrome]], [[Migraine|Migraine headache]], [[Hyperthyroidism|Hyperthyroidism,]] [[Renovascular hypertension|Renovascular hypertension,]] [[Hypoglycemia]], Labile hypertension ([[White coat hypertension]]), [[Stroke|Stroke and compression of the lateral medulla]], [[Seizure|Seizures]], Baroreflex failure, and drugs. | ||
==Epidemiology and Demographics== | ==Epidemiology and Demographics== |
Revision as of 18:21, 31 July 2017
Pheochromocytoma Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Pheochromocytoma overview On the Web |
American Roentgen Ray Society Images of Pheochromocytoma overview |
Risk calculators and risk factors for Pheochromocytoma overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ahmad Al Maradni, M.D. [2]
Please help WikiDoc by adding content here. It's easy! Click here to learn about editing.
Overview
Pheochromocytoma is a neuroendocrine tumor of the medulla of the adrenal glands and extra-adrenal chromaffin tissue, which failed to involute after birth,[1] they secrete excessive amounts of catecholamine s, usually epinephrine and norepinephrine. Extra-adrenal paragangliomas (often described as extra-adrenal pheochromocytomas) are closely related, though less common. Pheochromocytoma originates from the chromaffin cells of the sympathetic nervous system ganglia and is named based upon the primary anatomical site of origin. The incidence of pheochromocytoma ranges from a low of 0.2 per 100,000 persons to a high of 0.8 per 100,000 persons. The average age at diagnosis is 24.9 years in hereditary cases and 43.9 years in sporadic cases with men and women are equally affected.[2] MRI and CT scan are used for the diagnosis of pheochromocytoma. Surgery is the mainstay of the treatment.
Historical Perspective
In 1886, Fränkel made the first description of a patient with pheochromocytoma. In 1912, Ludwig Pick formulated the term pheochromocytoma.1912. In 1926, the first surgical removal of pheochromocytoma in the Military Medical Academy in Yugoslavia was performed by Professor Isidor Papo.
Pathophysiology
Pheochromocytoma arises from chromaffin cells of the adrenal medulla.On gross pathology, pheochromocytoma has a multinodular and a multicentric pattern of growth. On microscopic histopathological analysis, nesting (Zellballen) pattern composed of well-defined clusters of tumor cells separated by fibrovascular stroma is a characteristic finding. It may be benign or malignant, familial origin(multiple endocrine neoplasia type 2) or sporadic one. Both of them have genetic origin depends on a large number of genes: VHL, SDH, NF1, RET.
Classification
Pheochromocytoma may be classified by nature into benign and malignant and can be classified by spread into local, regional and metastatic and can be classified by origin into familial, nonfamilial, and sporadic.
Causes
Pheochromocytoma develops in called chromaffin cells, found in adrenal medulla which secretes adrenaline, noradrenaline, and dopamine. The genetic base of pheochromocytoma depends on 2 clusters: cluster 1 tumors are noradrenergic. Cluster 2 tumors are adrenergic. Familial pheochromocytoma may be caused by a mutation of either SDHD, VHL, SDHB, RET, NF1 genes.
Differentiating Pheochromocytoma from other Diseases
Pheochromocytoma must be differentiated from other causes of paroxysmal hypertension including severe paroxysmal hypertension (Pseudopheochromocytoma), panic disorder, Factitious hypertension, carcinoid syndrome, Migraine headache, Hyperthyroidism, Renovascular hypertension, Hypoglycemia, Labile hypertension (White coat hypertension), Stroke and compression of the lateral medulla, Seizures, Baroreflex failure, and drugs.
Epidemiology and Demographics
The incidence of pheochromocytoma ranges from a low of 0.2 per 100,000 persons to a high of 0.8 per 100,000 persons. The average age at diagnosis is 24.9 years in hereditary cases and 43.9 years in sporadic cases with men and women equally affected.[2]
Natural History, Complication and Prognosis
Prognosis of pheochromocytoma is generally good, but metastatic pheochromocytoma has a 5-year survival rate of approximately 45%.[2] Massive release of catecholamines can causes damage to myocytes.
Diagnosis
Symptoms
Symptoms of pheochromocytoma include palpitations, anxiety, and headaches.
Physical Examination
Common physical exam findings of pheochromocytoma include tachycardia, hypertension, and orthostatic hypotension.
Laboratory Findings
Laboratory findings consistent with the diagnosis of pheochromocytoma include elevated catecholamines and metanephrine levels.
CT
Head, neck, chest, and abdominal CT scans may be helpful in the diagnosis of pheochromocytoma.
MRI
Head, neck, chest, and abdominal MRI may be helpful in the diagnosis of pheochromocytoma.
Other Imaging Findings
123I-metaiodobenzylguanidine (MIBG) scintigraphy coupled with CT scan imaging can be used for diagnosis of pheochromocytoma.
Other Diagnostic Studies
Clonidine suppression test may be used in the diagnosis of pheochromocytoma.
Treatment
Medical Therapy
Treatment with alpha blockers (example: phenoxybenzamine) followed by beta blockers (example: atenolol) is required before surgery. Adjunctive chemotherapy and radiation are used in metastatic disease.
Surgery
Surgery is the mainstay of treatment for pheochromocytoma.
References
- ↑ Boulpaep, Emile L.; Boron, Walter F. (2003). Medical physiology: a cellular and molecular approach. Philadelphia: Saunders. p. 1065. ISBN 0-7216-3256-4.
- ↑ 2.0 2.1 2.2 National Cancer Institute. Physician Data Query Database 2015. National Cancer Institute. Physician Data Query Database 2015. http://www.cancer.gov/types/pheochromocytoma/hp/pheochromocytoma-treatment-pdq#link/_25_toc