Pheochromocytoma overview: Difference between revisions

Jump to navigation Jump to search
Medhat (talk | contribs)
Skazmi (talk | contribs)
No edit summary
Line 2: Line 2:
{{Pheochromocytoma}}
{{Pheochromocytoma}}
{{CMG}}; {{AE}} {{AAM}}
{{CMG}}; {{AE}} {{AAM}}
{{PleaseHelp}}


==Overview==
==Overview==

Revision as of 23:13, 14 August 2017

Pheochromocytoma Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Pheochromocytoma from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Pheochromocytoma overview On the Web

Most recent articles

cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Pheochromocytoma overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Pheochromocytoma overview

CDC on Pheochromocytoma overview

Pheochromocytoma overview in the news

Blogs on Pheochromocytoma overview

Directions to Hospitals Treating Pheochromocytoma

Risk calculators and risk factors for Pheochromocytoma overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ahmad Al Maradni, M.D. [2]

Overview

Pheochromocytoma is a neuroendocrine tumor of the medulla of the adrenal glands and extra-adrenal chromaffin tissue, which failed to involute after birth,[1] they secrete excessive amounts of catecholamine s, usually epinephrine and norepinephrine. Extra-adrenal paragangliomas (often described as extra-adrenal pheochromocytomas) are closely related, though less common. Pheochromocytoma originates from the chromaffin cells of the sympathetic nervous system ganglia and is named based upon the primary anatomical site of origin. The incidence of pheochromocytoma ranges from a low of 0.2 per 100,000 persons to a high of 0.8 per 100,000 persons. The average age at diagnosis is 24.9 years in hereditary cases and 43.9 years in sporadic cases with men and women are equally affected.[2] MRI and CT scan are used for the diagnosis of pheochromocytoma. Surgery is the mainstay of the treatment.

Historical Perspective

In 1886, Fränkel made the first description of a patient with pheochromocytoma. In 1912, Ludwig Pick formulated the term pheochromocytoma.1912. In 1926, the first surgical removal of pheochromocytoma in the Military Medical Academy in Yugoslavia was performed by Professor Isidor Papo.

Pathophysiology

Pheochromocytoma arises from chromaffin cells of the adrenal medulla.On gross pathology, pheochromocytoma has a multinodular and a multicentric pattern of growth. On microscopic histopathological analysis, nesting (Zellballen) pattern composed of well-defined clusters of tumor cells separated by fibrovascular stroma is a characteristic finding. It may be benign or malignant, familial origin(multiple endocrine neoplasia type 2) or sporadic one. Both of them have genetic origin depends on a large number of genes: VHLSDH, NF1RET.

Classification

Pheochromocytoma may be classified by nature into benign and malignant and can be classified by spread into local, regional and metastatic and can be classified by origin into familial, nonfamilial, and sporadic.

Causes

Pheochromocytoma develops in called chromaffin cells, found in adrenal medulla which secretes adrenaline, noradrenaline, and dopamine. The genetic base of pheochromocytoma depends on 2 clusters: cluster 1 tumors are noradrenergic. Cluster 2 tumors are adrenergic. Familial pheochromocytoma may be caused by a mutation of either SDHD, VHL, SDHB, RET, NF1 genes.

Differentiating Pheochromocytoma from other Diseases

Pheochromocytoma must be differentiated from other causes of paroxysmal hypertension including severe paroxysmal hypertension (Pseudopheochromocytoma), panic disorder, Factitious hypertensioncarcinoid syndromeMigraine headacheHyperthyroidism, Renovascular hypertension, Hypoglycemia, Labile hypertension (White coat hypertension), Stroke and compression of the lateral medullaSeizures, Baroreflex failure, and drugs.

Epidemiology and Demographics

The incidence of pheochromocytoma ranges from a low of 0.2 per 100,000 persons to a high of 0.8 per 100,000 persons. The average age at diagnosis is 24.9 years in hereditary cases and 43.9 years in sporadic cases with men and women equally affected.

Natural History, Complication and Prognosis

Pheochromocytoma is an adrenaline secreting tumor, usually develop in the fifth decade of life. Symptoms start with tachycardia, hypertension, headache and sweating. Massive release of catecholamines can cause hyperglycemia, malignant hypertension and metastasis. The prognosis of pheochromocytoma is generally good but metastatic pheochromocytoma has a 5-year survival rate of approximately 50%.

Diagnosis

Symptoms

Symptoms of pheochromocytoma include palpitations, anxiety, and headaches.

Physical Examination

Common physical exam findings of pheochromocytoma include tachycardia, hypertension, and orthostatic hypotension.

Laboratory Findings

Laboratory findings consistent with the diagnosis of pheochromocytoma include elevated catecholamines and metanephrine levels.

CT

Head, neck, chest, and abdominal CT scans may be helpful in the diagnosis of pheochromocytoma.

MRI

Head, neck, chest, and abdominal MRI may be helpful in the diagnosis of pheochromocytoma.

Other Imaging Findings

123I-metaiodobenzylguanidine (MIBG) scintigraphy coupled with CT scan imaging can be used for diagnosis of pheochromocytoma.

Other Diagnostic Studies

Clonidine suppression test may be used in the diagnosis of pheochromocytoma.

Treatment

Medical Therapy

Treatment with alpha blockers (example: phenoxybenzamine) followed by beta blockers (example: atenolol) is required before surgery. Other drugs can be used such as calcium channel blockers and metyrosine. Adjunctive chemotherapy and radiation are used in metastatic disease. Hypertensive crisis can be managed by using sodium nitroprusside, phentolamine, and nicardipine.

Surgery

Surgery is the mainstay of treatment for pheochromocytoma. AdrenalectomyLaparoscopic transabdominal and retroperitoneal approaches have been used successfully for nonmetastatic abdominal pheochromocytomas. The patient should receive glucocorticoid stress coverage in bilateral adrenalectomy.

References

  1. Boulpaep, Emile L.; Boron, Walter F. (2003). Medical physiology: a cellular and molecular approach. Philadelphia: Saunders. p. 1065. ISBN 0-7216-3256-4.
  2. National Cancer Institute. Physician Data Query Database 2015. National Cancer Institute. Physician Data Query Database 2015. http://www.cancer.gov/types/pheochromocytoma/hp/pheochromocytoma-treatment-pdq#link/_25_toc


Template:WikiDoc Sources