21-hydroxylase deficiency pathophysiology: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
==Overview== | ==Overview== | ||
The progression to 21-hydroxylase deficiency usually involves the a defective conversion of [[17-hydroxyprogesterone]] to [[11-deoxycorticosterone|11-deoxycortisol]] which results in decreased [[cortisol]] synthesis and therefore increased [[corticotropin]] ([[ACTH|ACTH)]] secretion. The resulting [[adrenal]] stimulation leads to increased production of [[androgens]] due to shunting of the pathway to [[androgen]] synthesis. More than 95% of cases of [[congenital adrenal hyperplasia]] ([[Congenital adrenal hyperplasia|CAH]]) are caused by 21-hydroxylase deficiency. The clinical manifestations of [[congenital adrenal hyperplasia]] is closely related to the type and severity of disease. The severity of disease relates to the [[mutation]] type which is causes [[enzyme]] inactivity or hypo-activity. There is a lack of [[enzyme]] in classic form of 21-hydroxylase deficiency; while in the non-classic form, enzymatic activity is reduced but sufficient to maintain normal [[glucocorticoid]] and [[mineralocorticoid]] production. The [[gene]] responsible for 21-hydroxylase deficiency is [[CYP21A1|CYP21A]]. This gene is located within the [[Human leukocyte antigen|human leucocyte antigen]] class III region of [[chromosome 6]]. Meiotic [[recombination]] occurs in this genomic region as a result of the high degree of [[sequence homology]] between [[CYP21A2]] and its [[pseudogene]] [[CYP21A1]]. Approximately 70% of [[CYP21A2]] [[genetic mutation]] is due to [[gene conversion]] and [[Microdeletion|micro-deletions]] in [[CYP21A1]] [[gene]]. | The progression to 21-hydroxylase deficiency usually involves the a defective conversion of [[17-hydroxyprogesterone]] to [[11-deoxycorticosterone|11-deoxycortisol]] which results in decreased [[cortisol]] synthesis and therefore increased [[corticotropin]] ([[ACTH|ACTH)]] secretion. The resulting [[adrenal]] stimulation leads to increased production of [[androgens]] due to shunting of the pathway to [[androgen]] synthesis. More than 95% of cases of [[congenital adrenal hyperplasia]] ([[Congenital adrenal hyperplasia|CAH]]) are caused by 21-hydroxylase deficiency. The clinical manifestations of [[congenital adrenal hyperplasia]] is closely related to the type and severity of disease. The severity of disease relates to the [[mutation]] type which is causes [[enzyme]] inactivity or hypo-activity. There is a lack of [[enzyme]] in classic form of 21-hydroxylase deficiency; while in the non-classic form, [[enzymatic]] activity is reduced but sufficient to maintain normal [[glucocorticoid]] and [[mineralocorticoid]] production. The [[gene]] responsible for 21-hydroxylase deficiency is [[CYP21A1|CYP21A]]. This [[gene]] is located within the [[Human leukocyte antigen|human leucocyte antigen]] class III region of [[chromosome 6]]. Meiotic [[recombination]] occurs in this genomic region as a result of the high degree of [[sequence homology]] between [[CYP21A2]] and its [[pseudogene]] [[CYP21A1]]. Approximately 70% of [[CYP21A2]] [[genetic mutation]] is due to [[gene conversion]] and [[Microdeletion|micro-deletions]] in [[CYP21A1]] [[gene]]. | ||
== Pathophysiology == | == Pathophysiology == | ||
Line 13: | Line 13: | ||
* The severity of disease relates to the [[mutation]] type, which casues [[enzyme]] inactivity or hypo activity. | * The severity of disease relates to the [[mutation]] type, which casues [[enzyme]] inactivity or hypo activity. | ||
* There is a lack of [[enzyme]] in classic type of 21-hydroxylase deficiency; while in the non-classic form, enzymatic activity is reduced but sufficient to maintain normal [[glucocorticoid]] and [[mineralocorticoid]] production. | * There is a lack of [[enzyme]] in classic type of 21-hydroxylase deficiency; while in the non-classic form, enzymatic activity is reduced but sufficient to maintain normal [[glucocorticoid]] and [[mineralocorticoid]] production. | ||
* Below is the hormonal pathway of [[adrenal]] [[steroids]] and related enzymes.<ref name="pmid10857554">{{cite journal |vauthors=White PC, Speiser PW |title=Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=Endocr. Rev. |volume=21 |issue=3 |pages=245–91 |year=2000 |pmid=10857554 |doi=10.1210/edrv.21.3.0398 |url=}}</ref><ref name="pmid20823466">{{cite journal |vauthors=Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC |title=Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline |journal=J. Clin. Endocrinol. Metab. |volume=95 |issue=9 |pages=4133–60 |year=2010 |pmid=20823466 |pmc=2936060 |doi=10.1210/jc.2009-2631 |url=}}</ref> | * Below is the [[hormonal]] pathway of [[adrenal]] [[steroids]] and related [[enzymes]].<ref name="pmid10857554">{{cite journal |vauthors=White PC, Speiser PW |title=Congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=Endocr. Rev. |volume=21 |issue=3 |pages=245–91 |year=2000 |pmid=10857554 |doi=10.1210/edrv.21.3.0398 |url=}}</ref><ref name="pmid20823466">{{cite journal |vauthors=Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC |title=Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline |journal=J. Clin. Endocrinol. Metab. |volume=95 |issue=9 |pages=4133–60 |year=2010 |pmid=20823466 |pmc=2936060 |doi=10.1210/jc.2009-2631 |url=}}</ref> | ||
Line 21: | Line 21: | ||
* [[Congenital adrenal hyperplasia]] subtypes are all [[autosomal recessive]] and [[Monogenic disorder|monogenetic]]. The disease manifestation follows the [[allele]] that results in a more functional enzyme, and generally correlation between [[genotype]] and [[phenotype]] is good.<ref name="pmid20926536">{{cite journal |vauthors=Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, McDonnell NB, Merke DP |title=Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=J. Clin. Endocrinol. Metab. |volume=96 |issue=1 |pages=E161–72 |year=2011 |pmid=20926536 |pmc=3038490 |doi=10.1210/jc.2010-0319 |url=}}</ref><ref name="pmid23359698">{{cite journal |vauthors=New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D, Sun L, Zaidi M, Wilson RC, Yuen T |title=Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=110 |issue=7 |pages=2611–6 |year=2013 |pmid=23359698 |pmc=3574953 |doi=10.1073/pnas.1300057110 |url=}}</ref><ref name="pmid20926536">{{cite journal |vauthors=Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, McDonnell NB, Merke DP |title=Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=J. Clin. Endocrinol. Metab. |volume=96 |issue=1 |pages=E161–72 |year=2011 |pmid=20926536 |pmc=3038490 |doi=10.1210/jc.2010-0319 |url=}}</ref> | * [[Congenital adrenal hyperplasia]] subtypes are all [[autosomal recessive]] and [[Monogenic disorder|monogenetic]]. The disease manifestation follows the [[allele]] that results in a more functional enzyme, and generally correlation between [[genotype]] and [[phenotype]] is good.<ref name="pmid20926536">{{cite journal |vauthors=Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, McDonnell NB, Merke DP |title=Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=J. Clin. Endocrinol. Metab. |volume=96 |issue=1 |pages=E161–72 |year=2011 |pmid=20926536 |pmc=3038490 |doi=10.1210/jc.2010-0319 |url=}}</ref><ref name="pmid23359698">{{cite journal |vauthors=New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D, Sun L, Zaidi M, Wilson RC, Yuen T |title=Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=110 |issue=7 |pages=2611–6 |year=2013 |pmid=23359698 |pmc=3574953 |doi=10.1073/pnas.1300057110 |url=}}</ref><ref name="pmid20926536">{{cite journal |vauthors=Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, McDonnell NB, Merke DP |title=Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency |journal=J. Clin. Endocrinol. Metab. |volume=96 |issue=1 |pages=E161–72 |year=2011 |pmid=20926536 |pmc=3038490 |doi=10.1210/jc.2010-0319 |url=}}</ref> | ||
* | === CYP21A gene === | ||
* | * The [[gene]] responsible for 21-hydroxylase deficiency is [[CYP21A1|CYP21A]]. This gene is located within the [[Human leukocyte antigen|human leucocyte antigen]] class III region of [[chromosome 6]]. | ||
* | * [[CYP21A1|CYP21A]] gene has two types: | ||
'''(a) Functional variant:''' | |||
* An active [[gene]] called [[CYP21A2]], which encodes 21-hydroxylase, a [[cytochrome P450]] type II [[enzyme]] of 495 [[amino acids]]. | |||
'''(b) Non-funtional variant''' | |||
* The other [[gene]] is a non-functional [[pseudogene]] named [[CYP21A1]] or CYP21P. This [[pseudogene]] produces an [[enzyme]] with no activity because it lacks eight bases from [[codons]] 110-112, which results in a [[stop codon]].<ref name="pmid3487786">{{cite journal |vauthors=White PC, New MI, Dupont B |title=Structure of human steroid 21-hydroxylase genes |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=83 |issue=14 |pages=5111–5 |year=1986 |pmid=3487786 |pmc=323900 |doi= |url=}}</ref> | |||
* Meiotic [[recombination]] events occurs in this genomic region as a result of the high degree of [[sequence homology]] between [[CYP21A2]] and its [[pseudogene]] [[CYP21A1]]. | * Meiotic [[recombination]] events occurs in this [[genomic]] region as a result of the high degree of [[sequence homology]] between [[CYP21A2]] and its [[pseudogene]] [[CYP21A1]]. | ||
** Approximately 70% of [[CYP21A2]] disease is due to [[gene conversion]] and [[Microdeletion|microdeletions]] in [[CYP21A1]] gene. | ** Approximately 70% of [[CYP21A2]] disease is due to [[gene conversion]] and [[Microdeletion|microdeletions]] in [[CYP21A1]] [[gene]]. | ||
** Approximately 25% to 30% are chimeric [[genes]] due to large [[Deletion (genetics)|deletions]]. | ** Approximately 25% to 30% are [[Chimerism|chimeric]] [[genes]] due to large [[Deletion (genetics)|deletions]]. | ||
** Approximately 1% to 2% of cases are due to [[De novo mutation|de novo mutations]] because of high variability of the [[CYP21A2]] [[locus]]. | ** Approximately 1% to 2% of cases are due to [[De novo mutation|de novo mutations]] because of high variability of the [[CYP21A2]] [[locus]]. | ||
** [[Chromosome 6]] [[uniparental disomy]] is rare cause of 21-hydroxylase deficiency with an unknown [[prevalence]]. | ** [[Chromosome 6]] [[uniparental disomy]] is rare cause of 21-hydroxylase deficiency with an unknown [[prevalence]]. | ||
* [[Gene]] [[mutations]] that completely inactivate [[CYP21A2]] gene will result in the classic type and salt-wasting subtype. | * [[Gene]] [[mutations]] that completely inactivate [[CYP21A2]] [[gene]] will result in the classic type and salt-wasting subtype. | ||
* [[Gene]] [[mutations]] that maintain 1–2% of 21-hydroxylase activity will result in classic type and non-salt-wasting subtype. These patients have minimal [[aldosterone]] production that prevents a [[neonatal]] [[adrenal crisis]].<ref name="pmid2831244">{{cite journal |vauthors=Fiet J, Gueux B, Gourmelen M, Kuttenn F, Vexiau P, Couillin P, Pham-Huu-Trung MT, Villette JM, Raux-Demay MC, Galons H |title=Comparison of basal and adrenocorticotropin-stimulated plasma 21-deoxycortisol and 17-hydroxyprogesterone values as biological markers of late-onset adrenal hyperplasia |journal=J. Clin. Endocrinol. Metab. |volume=66 |issue=4 |pages=659–67 |year=1988 |pmid=2831244 |doi=10.1210/jcem-66-4-659 |url=}}</ref> | * [[Gene]] [[mutations]] that maintain 1–2% of 21-hydroxylase activity will result in classic type and non-salt-wasting subtype. These patients have minimal [[aldosterone]] production that prevents a [[neonatal]] [[adrenal crisis]].<ref name="pmid2831244">{{cite journal |vauthors=Fiet J, Gueux B, Gourmelen M, Kuttenn F, Vexiau P, Couillin P, Pham-Huu-Trung MT, Villette JM, Raux-Demay MC, Galons H |title=Comparison of basal and adrenocorticotropin-stimulated plasma 21-deoxycortisol and 17-hydroxyprogesterone values as biological markers of late-onset adrenal hyperplasia |journal=J. Clin. Endocrinol. Metab. |volume=66 |issue=4 |pages=659–67 |year=1988 |pmid=2831244 |doi=10.1210/jcem-66-4-659 |url=}}</ref> | ||
Line 37: | Line 41: | ||
[[Gross]] [[pathology]] findings in patients with 21 hydroxylase deficiency are:<ref name="radio">Congenital adrenal hyperplasia. Dr Henry Knipe and Dr M Venkatesh . Radiopaedia.org 2015.http://radiopaedia.org/articles/congenital-adrenal-hyperplasia</ref><ref name="pmid25372578">{{cite journal |vauthors=Teixeira SR, Elias PC, Andrade MT, Melo AF, Elias Junior J |title=The role of imaging in congenital adrenal hyperplasia |journal=Arq Bras Endocrinol Metabol |volume=58 |issue=7 |pages=701–8 |year=2014 |pmid=25372578 |doi= |url=}}</ref> | [[Gross]] [[pathology]] findings in patients with 21 hydroxylase deficiency are:<ref name="radio">Congenital adrenal hyperplasia. Dr Henry Knipe and Dr M Venkatesh . Radiopaedia.org 2015.http://radiopaedia.org/articles/congenital-adrenal-hyperplasia</ref><ref name="pmid25372578">{{cite journal |vauthors=Teixeira SR, Elias PC, Andrade MT, Melo AF, Elias Junior J |title=The role of imaging in congenital adrenal hyperplasia |journal=Arq Bras Endocrinol Metabol |volume=58 |issue=7 |pages=701–8 |year=2014 |pmid=25372578 |doi= |url=}}</ref> | ||
*Enlarged [[adrenal glands]] | *Enlarged [[adrenal glands]] | ||
*Wrinkled surface [[adrenal glands]] | *Wrinkled surface of [[adrenal glands]] | ||
*Cerebriform pattern [[adrenal glands]] ([[pathognomonic]] sign) | *Cerebriform pattern in [[adrenal glands]] ([[pathognomonic]] sign) | ||
*Normal [[ultrasound]] | *Normal [[ultrasound]] appearance | ||
*[[Testicular masses]] may be identified representing [[adrenal]] rest tissue | *[[Testicular masses]] may be identified representing [[adrenal]] rest tissue | ||
==Microscopic Pathology== | ==Microscopic Pathology== | ||
In 21 hydroxylase deficiency [[microscopic]] findings may include: | In 21 hydroxylase deficiency [[microscopic]] findings may include: | ||
* Diffuse cortical [[hyperplasia]] with smaller cells | * Diffuse [[Adrenal cortex|cortical]] [[hyperplasia]] with smaller [[Cell (biology)|cells]] | ||
* The cell [[cytoplasm]] can be vacuolated, and often more [[basophilic]]. | * The [[Cell (biology)|cell]] [[cytoplasm]] can be [[Vacuolization|vacuolated]], and often more [[basophilic]]. | ||
* Rare [[mitotic]] figures may be present | * Rare [[mitotic]] figures may be present | ||
* The [[hyperplastic]] cells typically lack features of | * The [[hyperplastic]] [[Cell (biology)|cells]] typically lack features of [[atypia|cellular atypia]].<ref name="urlAdrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas">{{cite web |url=https://ntp.niehs.nih.gov/nnl/endocrine/adrenal/hyperpl/index.htm |title=Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas |format= |work= |accessdate=}}</ref> | ||
{| | {| | ||
| | | |
Revision as of 18:10, 24 August 2017
21-hydroxylase deficiency Microchapters |
Differentiating 21-Hydroxylase Deficiency from other Diseases |
Diagnosis |
Treatment |
Case Studies |
21-hydroxylase deficiency pathophysiology On the Web |
American Roentgen Ray Society Images of 21-hydroxylase deficiency pathophysiology |
Risk calculators and risk factors for 21-hydroxylase deficiency pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-In-Chief: Mehrian Jafarizade, M.D [2]
Overview
The progression to 21-hydroxylase deficiency usually involves the a defective conversion of 17-hydroxyprogesterone to 11-deoxycortisol which results in decreased cortisol synthesis and therefore increased corticotropin (ACTH) secretion. The resulting adrenal stimulation leads to increased production of androgens due to shunting of the pathway to androgen synthesis. More than 95% of cases of congenital adrenal hyperplasia (CAH) are caused by 21-hydroxylase deficiency. The clinical manifestations of congenital adrenal hyperplasia is closely related to the type and severity of disease. The severity of disease relates to the mutation type which is causes enzyme inactivity or hypo-activity. There is a lack of enzyme in classic form of 21-hydroxylase deficiency; while in the non-classic form, enzymatic activity is reduced but sufficient to maintain normal glucocorticoid and mineralocorticoid production. The gene responsible for 21-hydroxylase deficiency is CYP21A. This gene is located within the human leucocyte antigen class III region of chromosome 6. Meiotic recombination occurs in this genomic region as a result of the high degree of sequence homology between CYP21A2 and its pseudogene CYP21A1. Approximately 70% of CYP21A2 genetic mutation is due to gene conversion and micro-deletions in CYP21A1 gene.
Pathophysiology
- In patients with 21-hydroxylase deficiency, there is a defective conversion of 17-hydroxyprogesterone to 11-deoxycortisol which results in decreased cortisol synthesis and therefore increased corticotropin (ACTH) secretion.
- The resulting adrenal stimulation leads to increased production of androgens.
- More than 95% of all cases of congenital adrenal hyperplasia (CAH) are caused by 21-hydroxylase deficiency; the clinical manifestations of 21-hydroxylase deficiency is closely related to the type and severity of disease.
- The severity of disease relates to the mutation type, which casues enzyme inactivity or hypo activity.
- There is a lack of enzyme in classic type of 21-hydroxylase deficiency; while in the non-classic form, enzymatic activity is reduced but sufficient to maintain normal glucocorticoid and mineralocorticoid production.
- Below is the hormonal pathway of adrenal steroids and related enzymes.[1][2]
Genetics
- Congenital adrenal hyperplasia subtypes are all autosomal recessive and monogenetic. The disease manifestation follows the allele that results in a more functional enzyme, and generally correlation between genotype and phenotype is good.[4][5][4]
CYP21A gene
- The gene responsible for 21-hydroxylase deficiency is CYP21A. This gene is located within the human leucocyte antigen class III region of chromosome 6.
- CYP21A gene has two types:
(a) Functional variant:
- An active gene called CYP21A2, which encodes 21-hydroxylase, a cytochrome P450 type II enzyme of 495 amino acids.
(b) Non-funtional variant
- The other gene is a non-functional pseudogene named CYP21A1 or CYP21P. This pseudogene produces an enzyme with no activity because it lacks eight bases from codons 110-112, which results in a stop codon.[6]
- Meiotic recombination events occurs in this genomic region as a result of the high degree of sequence homology between CYP21A2 and its pseudogene CYP21A1.
- Approximately 70% of CYP21A2 disease is due to gene conversion and microdeletions in CYP21A1 gene.
- Approximately 25% to 30% are chimeric genes due to large deletions.
- Approximately 1% to 2% of cases are due to de novo mutations because of high variability of the CYP21A2 locus.
- Chromosome 6 uniparental disomy is rare cause of 21-hydroxylase deficiency with an unknown prevalence.
- Gene mutations that completely inactivate CYP21A2 gene will result in the classic type and salt-wasting subtype.
- Gene mutations that maintain 1–2% of 21-hydroxylase activity will result in classic type and non-salt-wasting subtype. These patients have minimal aldosterone production that prevents a neonatal adrenal crisis.[7]
Gross Pathology
Gross pathology findings in patients with 21 hydroxylase deficiency are:[8][9]
- Enlarged adrenal glands
- Wrinkled surface of adrenal glands
- Cerebriform pattern in adrenal glands (pathognomonic sign)
- Normal ultrasound appearance
- Testicular masses may be identified representing adrenal rest tissue
Microscopic Pathology
In 21 hydroxylase deficiency microscopic findings may include:
- Diffuse cortical hyperplasia with smaller cells
- The cell cytoplasm can be vacuolated, and often more basophilic.
- Rare mitotic figures may be present
- The hyperplastic cells typically lack features of cellular atypia.[10]
References
- ↑ White PC, Speiser PW (2000). "Congenital adrenal hyperplasia due to 21-hydroxylase deficiency". Endocr. Rev. 21 (3): 245–91. doi:10.1210/edrv.21.3.0398. PMID 10857554.
- ↑ Speiser PW, Azziz R, Baskin LS, Ghizzoni L, Hensle TW, Merke DP, Meyer-Bahlburg HF, Miller WL, Montori VM, Oberfield SE, Ritzen M, White PC (2010). "Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society clinical practice guideline". J. Clin. Endocrinol. Metab. 95 (9): 4133–60. doi:10.1210/jc.2009-2631. PMC 2936060. PMID 20823466.
- ↑ "File:Adrenal Steroids Pathways.svg - Wikimedia Commons".
- ↑ 4.0 4.1 Finkielstain GP, Chen W, Mehta SP, Fujimura FK, Hanna RM, Van Ryzin C, McDonnell NB, Merke DP (2011). "Comprehensive genetic analysis of 182 unrelated families with congenital adrenal hyperplasia due to 21-hydroxylase deficiency". J. Clin. Endocrinol. Metab. 96 (1): E161–72. doi:10.1210/jc.2010-0319. PMC 3038490. PMID 20926536.
- ↑ New MI, Abraham M, Gonzalez B, Dumic M, Razzaghy-Azar M, Chitayat D, Sun L, Zaidi M, Wilson RC, Yuen T (2013). "Genotype-phenotype correlation in 1,507 families with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency". Proc. Natl. Acad. Sci. U.S.A. 110 (7): 2611–6. doi:10.1073/pnas.1300057110. PMC 3574953. PMID 23359698.
- ↑ White PC, New MI, Dupont B (1986). "Structure of human steroid 21-hydroxylase genes". Proc. Natl. Acad. Sci. U.S.A. 83 (14): 5111–5. PMC 323900. PMID 3487786.
- ↑ Fiet J, Gueux B, Gourmelen M, Kuttenn F, Vexiau P, Couillin P, Pham-Huu-Trung MT, Villette JM, Raux-Demay MC, Galons H (1988). "Comparison of basal and adrenocorticotropin-stimulated plasma 21-deoxycortisol and 17-hydroxyprogesterone values as biological markers of late-onset adrenal hyperplasia". J. Clin. Endocrinol. Metab. 66 (4): 659–67. doi:10.1210/jcem-66-4-659. PMID 2831244.
- ↑ Congenital adrenal hyperplasia. Dr Henry Knipe and Dr M Venkatesh . Radiopaedia.org 2015.http://radiopaedia.org/articles/congenital-adrenal-hyperplasia
- ↑ Teixeira SR, Elias PC, Andrade MT, Melo AF, Elias Junior J (2014). "The role of imaging in congenital adrenal hyperplasia". Arq Bras Endocrinol Metabol. 58 (7): 701–8. PMID 25372578.
- ↑ 10.0 10.1 10.2 "Adrenal Gland - Hyperplasia - Nonneoplastic Lesion Atlas".