Toxic Adenoma other imaging findings: Difference between revisions
Jump to navigation
Jump to search
Aditya Ganti (talk | contribs) |
Aditya Ganti (talk | contribs) |
||
Line 5: | Line 5: | ||
==Other Imaging Findings== | ==Other Imaging Findings== | ||
*Radionuclide imaging and quantitative radioisotopic uptake studies are always required to establish the diagnosis of toxic adenoma or toxic nodular goiter.<ref name="pmid4110446">{{cite journal |vauthors=Hurley PJ, Maisey MN, Natarajan TK, Wagner HN |title=A computerized system for rapid evaluation of thyroid function |journal=J. Clin. Endocrinol. Metab. |volume=34 |issue=2 |pages=354–60 |year=1972 |pmid=4110446 |doi=10.1210/jcem-34-2-354 |url=}}</ref> | *Radionuclide imaging and quantitative radioisotopic uptake studies are always required to establish the diagnosis of toxic adenoma or toxic nodular goiter.<ref name="pmid4110446">{{cite journal |vauthors=Hurley PJ, Maisey MN, Natarajan TK, Wagner HN |title=A computerized system for rapid evaluation of thyroid function |journal=J. Clin. Endocrinol. Metab. |volume=34 |issue=2 |pages=354–60 |year=1972 |pmid=4110446 |doi=10.1210/jcem-34-2-354 |url=}}</ref> | ||
*Radionuclide imaging can be performed with radioactive iodine-123 ( 123 I) or with technetium-99m ( 99m Tc). | *Radionuclide imaging can be performed with radioactive iodine-123 ( 123 I) or with technetium-99m ( 99m Tc).<ref name="pmid15162989">{{cite journal |vauthors=Smith JR, Oates E |title=Radionuclide imaging of the thyroid gland: patterns, pearls, and pitfalls |journal=Clin Nucl Med |volume=29 |issue=3 |pages=181–93 |year=2004 |pmid=15162989 |doi= |url=}}</ref> | ||
*Radionuclide imaging performed with 123 I or 99m Tc-technetium pertechnetate, are trapped by the sodium-iodide symporter in functioning thyroid tissue, although only radioiodine is subsequently organified. | *Radionuclide imaging performed with 123 I or 99m Tc-technetium pertechnetate, are trapped by the sodium-iodide symporter in functioning thyroid tissue, although only radioiodine is subsequently organified. | ||
*In patients with hyperthyroidism caused by a toxic adenoma, there is a characteristic restriction of radionuclide uptake to the responsible hyper functioning nodule with suppression of radionuclide uptake in the remainder of the gland. | *In patients with hyperthyroidism caused by a toxic adenoma, there is a characteristic restriction of radionuclide uptake to the responsible hyper functioning nodule with suppression of radionuclide uptake in the remainder of the gland. |
Revision as of 19:54, 7 September 2017
Toxic Adenoma Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Template:T On the Web |
American Roentgen Ray Society Images of Toxic Adenoma other imaging findings |
Risk calculators and risk factors for Toxic Adenoma other imaging findings |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Aditya Ganti M.B.B.S. [2]
Overview
Other Imaging Findings
- Radionuclide imaging and quantitative radioisotopic uptake studies are always required to establish the diagnosis of toxic adenoma or toxic nodular goiter.[1]
- Radionuclide imaging can be performed with radioactive iodine-123 ( 123 I) or with technetium-99m ( 99m Tc).[2]
- Radionuclide imaging performed with 123 I or 99m Tc-technetium pertechnetate, are trapped by the sodium-iodide symporter in functioning thyroid tissue, although only radioiodine is subsequently organified.
- In patients with hyperthyroidism caused by a toxic adenoma, there is a characteristic restriction of radionuclide uptake to the responsible hyper functioning nodule with suppression of radionuclide uptake in the remainder of the gland.
- In a patient with a low serum TSH concentration, not only does the scan appearance support the diagnosis of toxic adenoma, but in almost all cases it also excludes malignancy in the nodule.
- If some thyroid nodules are hypo functioning, it is necessary to rule out cancer by fine-needle aspiration cytology.
Differential for thyrotoxicosis | Fractional Uptake
of Radioactive Iodine in 24 hrs (%) |
Radioactive iodine
Distrubution |
---|---|---|
Graves’ disease | 40-95 | Diffuse
(Homogeneous within thyroid) |
Toxic adenoma | 20-60 | Restricted to autonomous regions in thyroid |
Subacute thyroiditis | <2 | minimal uptake |
Silent thyroiditis | <2 | minimal uptake |
Iodine-induced thyrotoxicosis | <2 | minimal uptake |
Factitious or
iatrogenic thyrotoxicosis |
<2 | minimal uptake |
Struma ovarii | <2 | Uptake in ovary |
Follicular carcinoma | <2 | Uptake in cancer metastasis |
Thyroid-stimulating hormone–induced thyrotoxicosis | 30-80 | Diffuse
(Homogeneous within thyroid) |
References
- ↑ Hurley PJ, Maisey MN, Natarajan TK, Wagner HN (1972). "A computerized system for rapid evaluation of thyroid function". J. Clin. Endocrinol. Metab. 34 (2): 354–60. doi:10.1210/jcem-34-2-354. PMID 4110446.
- ↑ Smith JR, Oates E (2004). "Radionuclide imaging of the thyroid gland: patterns, pearls, and pitfalls". Clin Nucl Med. 29 (3): 181–93. PMID 15162989.