Hypopituitarism overview: Difference between revisions

Jump to navigation Jump to search
Iqra Qamar (talk | contribs)
Iqra Qamar (talk | contribs)
Line 4: Line 4:


==Overview==
==Overview==
Hypopituitarism is referred to the deficiency of one of [[Pituitary gland|the pituitary gland]] [[hormones]] or more. Hypopituitarism can be classified according to the affected part of the pituitary gland either anterior or posterior. The whole pituitary gland may be affected leading to the deficiency of all pituitary hormones, known as [[panhypopituitarism]]. The pathophysiology of hypopituitarism mainly involves [[Ischemia|ischemic injury]] of the [[pituitary gland]]. The [[ischemia]] may be due to [[hemorrhage]], [[tumors]], [[brain injury]], and compression or occlusion of the [[Hypophyseal portal system|hypophyseal blood vessels]], which is the main [[blood]] supply of the pituitary gland. Causes of hypopituitarism may be classified based upon the etiology such as [[congenital]] or [[acquired]]. Common congenital causes include [[idiopathic]], [[anatomic]] [[lesion]] in the [[sella turcica]] and [[CNS]] [[malformations]]. Common acquired causes may include [[pituitary macroadenoma]], [[craniopharyngioma]], [[surgery]], [[radiation]], [[traumatic brain injury]], [[Sheehan's syndrome]], [[apoplexy]], [[Subarachnoid hemorrhage|SAH]], [[meningitis]], [[hypophysitis]], [[meningioma]], [[lymphoma]], [[hemochromatosis]] and Wegner's [[granulomatosis]]. Less common causes include Peri-natal insults, [[genetic]] causes, such as [[Kallman syndrome]], [[Pallister-Hall syndrome]], Rieger syndrome,  and [[Pituitary gland|pituitary]] [[hypoplasia]] or [[aplasia]]. Hypopituitarism can also be classified based upon the anatomical location of the pathology such as [[hypothalamus]] or [[pituitary gland]]. Common risk factors in the development of hypopituitarism may include [[pituitary tumor]] or space occupying [[lesion]], [[pituitary apoplexy]], severe [[blood]] loss such as [[Sheehan's syndrome]], [[pituitary]] [[surgery]], [[Radiation|cranial radiation,]] [[genetic defects]], [[hypothalamic]] [[disease]], [[immunosuppression]], [[inflammatory]] processes, [[pituitary]] [[infarction]] and non-[[compliance]] with [[hormone replacement therapy]]. Less common risk factors include infiltrative disorders, [[traumatic brain injury]] causing [[skull]] fractures, [[ischemic stroke]] and [[subarachnoid hemorrhage]]. Screening of hypopituitarism has been recommended for the patients with [[traumatic brain injury]] and patients with a history of [[radiation exposure]] on the [[head]]. Natural history of hypopituitarism depends on the different clinical manifestations like [[hypogonadism]] that if left untreated will lead to decrease [[bone density]] and [[osteoporosis]]. Complications of hypopituitarism include [[adrenal crisis]], [[pseudotumor cerebri]], and [[diabetes mellitus]]. Hypopituitarism has a good prognosis as long as the [[hormonal replacement therapy]] is performed properly. Patients of hypopituitarism may be [[asymptomatic]] or show symptoms which can be nonspecific or specific for the deficient [[hormone]]. Physical examination of patients with hypopituitarism is usually remarkable for the respective [[hormonal]] deficiency and present with features of that specific [[hormone]]. A decrease in the [[Pituitary gland|pituitary]] different [[hormones]] level is suggestive of hypopituitarism and each hormone deficiency has a relative detective test. [[Corticotropin]] [[deficiency]] is detected by assessing basal [[cortisol]] secretion. [[Magnetic resonance imaging|MRI]] is the imaging procedure of choice in the diagnosis of [[Hypopituitarism (patient information)|hypopituitarism]]. It is preferred over the [[CT scan]] as [[optic chiasm]], [[pituitary stalk]], and [[cavernous sinuses]] can be seen in [[Magnetic resonance imaging|MRI]]. The mainstay of treatment of hypopituitarism is the [[hormonal replacement therapy]] and treatment of the underlying cause.  
Hypopituitarism is referred to the deficiency of one of [[Pituitary gland|the pituitary gland]] [[hormones]] or more. Hypopituitarism can be classified according to the affected part of the pituitary gland either anterior or posterior. The whole pituitary gland may be affected leading to the deficiency of all pituitary hormones, known as [[panhypopituitarism]]. The pathophysiology of hypopituitarism mainly involves [[Ischemia|ischemic injury]] of the [[pituitary gland]]. The [[ischemia]] may be due to [[hemorrhage]], [[tumors]], [[brain injury]], and compression or occlusion of the [[Hypophyseal portal system|hypophyseal blood vessels]], which is the main [[blood]] supply of the pituitary gland. Causes of hypopituitarism may be classified based upon the etiology such as [[congenital]] or [[acquired]]. Common congenital causes include [[idiopathic]], [[anatomic]] [[lesion]] in the [[sella turcica]] and [[CNS]] [[malformations]]. Common acquired causes may include [[pituitary macroadenoma]], [[craniopharyngioma]], [[surgery]], [[radiation]], [[traumatic brain injury]], [[Sheehan's syndrome]], [[apoplexy]], [[Subarachnoid hemorrhage|SAH]], [[meningitis]], [[hypophysitis]], [[meningioma]], [[lymphoma]], [[hemochromatosis]] and Wegner's [[granulomatosis]]. Less common causes include peri-natal insults, [[genetic]] causes and [[Pituitary gland|pituitary]] [[hypoplasia]] or [[aplasia]]. Hypopituitarism can also be classified based upon the anatomical location of the pathology such as [[hypothalamus]] or [[pituitary gland]]. Common risk factors in the development of hypopituitarism may include [[pituitary tumor]] or space occupying [[lesion]], [[pituitary apoplexy]], severe [[blood]] loss such as [[Sheehan's syndrome]], [[pituitary]] [[surgery]], [[Radiation|cranial radiation,]] [[genetic defects]], [[hypothalamic]] [[disease]], [[immunosuppression]], [[inflammatory]] processes, [[pituitary]] [[infarction]] and non-[[compliance]] with [[hormone replacement therapy]]. Less common risk factors include infiltrative disorders, [[traumatic brain injury]] causing [[skull]] fractures, [[ischemic stroke]] and [[subarachnoid hemorrhage]]. Screening of hypopituitarism has been recommended for the patients with [[traumatic brain injury]] and patients with a history of [[radiation exposure]] on the [[head]]. The natural history of hypopituitarism depends on the severity of damage leading to partial or complete hormonal deficiency. If left untreated can lead to critical consequences. Complications of hypopituitarism include [[adrenal crisis]], osteoporosis, electrolyte abnormalities, and [[diabetes mellitus]]. Hypopituitarism is often associated with [[vascular]] conditions and has a high [[mortality rate]]. Hypopituitarism has a good prognosis as long as the [[hormonal replacement therapy]] is given adequately. A positive history of [[head trauma]], [[adenoma]], a [[lesion]] such as a [[Sella turcica|sellar]] lesion, or any symptom related to [[Pituitary gland|pituitary]] [[hormonal]] deficiency is suggestive of [[hypopituitarism]]. Patients of [[hypopituitarism]] may be [[asymptomatic]] or show symptoms which can be nonspecific or specific for the deficient [[hormone]]. Patients with acute onset of [[Hypopituitarism (patient information)|hypopituitarism]] can present with a [[headache]], [[nausea]], [[vomiting]], [[visual impairment]], [[Fatigue (physical)|fatigue]], [[cold]] intolerance, [[hypotension]], and [[Dizziness (patient information)|dizziness]]. Patients with chronic [[hypopituitarism]] can present with [[pallor]], [[weight loss]], and [[anorexia]]. Clinical presentation in [[Hypopituitarism (patient information)|hypopituitarism]] depends upon the onset, the severity of [[hormonal]] deficiency and the number of deficient [[hormones]]. A subnormal or reduced concentration of [[Pituitary hormone|pituitary hormones]] is diagnostic of hypopituitarism. Patients with complete hormonal deficiencies are mostly symptomatic and have low serum concentrations of both, the [[pituitary]] hormones as well as the target-organ hormones. Patients having partial hormonal deficiencies are detected by dynamic tests/stimulatory tests such as [[corticotropin]] stimulation, [[insulin]]-induced [[Hypoglycemia|hypoglycemia,]] and [[metyrapone]] test. [[Magnetic resonance imaging|MRI]] scan with intravenous gadolinium is the imaging procedure of choice in the diagnosis of [[hypopituitarism]] . It is preferred over the [[CT scan]] as [[optic chiasm]], [[pituitary stalk]], and [[cavernous sinuses]] can be seen in [[Magnetic resonance imaging|MRI]]. Treatment involves appropriate [[hormone replacement therapy]], which must be taken for the rest of your life that results in significant improvement and reversal of not only the physical symptoms but also the [[psychological]] symptoms.  


==Historical Perspective==
== Historical Perspective ==
Discovery of the hypopituitarism returns back to 1914 when Dr. Simmonds described the disease for the first time. The diagnosis has been based on the patients' presentation only since then till 1950 when Dr. Yalow and Berson discovered the radioimmunoassay which helped in the measurement the [[hormonal]] levels. Through the 20th and 21st centuries, causes of the hypopituitarism were being described.
Discovery of the hypopituitarism returns back to 1914 when Dr. Simmonds described the disease for the first time. The diagnosis has been based on the patients' presentation only since then till 1950 when Dr. Yalow and Berson discovered the radioimmunoassay which helped in the measurement the [[hormonal]] levels. Through the 20th and 21st centuries, causes of the hypopituitarism were being described.



Revision as of 14:44, 21 September 2017

Hypopituitarism Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypopituitarism from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypopituitarism overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hypopituitarism overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypopituitarism overview

CDC on Hypopituitarism overview

Hypopituitarism overview in the news

Blogs on Hypopituitarism overview

Directions to Hospitals Treating Hypopituitarism

Risk calculators and risk factors for Hypopituitarism overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Iqra Qamar M.D.[2], Ahmed Elsaiey, MBBCH [3]

Overview

Hypopituitarism is referred to the deficiency of one of the pituitary gland hormones or more. Hypopituitarism can be classified according to the affected part of the pituitary gland either anterior or posterior. The whole pituitary gland may be affected leading to the deficiency of all pituitary hormones, known as panhypopituitarism. The pathophysiology of hypopituitarism mainly involves ischemic injury of the pituitary gland. The ischemia may be due to hemorrhage, tumors, brain injury, and compression or occlusion of the hypophyseal blood vessels, which is the main blood supply of the pituitary gland. Causes of hypopituitarism may be classified based upon the etiology such as congenital or acquired. Common congenital causes include idiopathic, anatomic lesion in the sella turcica and CNS malformations. Common acquired causes may include pituitary macroadenoma, craniopharyngioma, surgery, radiation, traumatic brain injury, Sheehan's syndrome, apoplexy, SAH, meningitis, hypophysitis, meningioma, lymphoma, hemochromatosis and Wegner's granulomatosis. Less common causes include peri-natal insults, genetic causes and pituitary hypoplasia or aplasia. Hypopituitarism can also be classified based upon the anatomical location of the pathology such as hypothalamus or pituitary gland. Common risk factors in the development of hypopituitarism may include pituitary tumor or space occupying lesion, pituitary apoplexy, severe blood loss such as Sheehan's syndrome, pituitary surgery, cranial radiation, genetic defects, hypothalamic disease, immunosuppression, inflammatory processes, pituitary infarction and non-compliance with hormone replacement therapy. Less common risk factors include infiltrative disorders, traumatic brain injury causing skull fractures, ischemic stroke and subarachnoid hemorrhage. Screening of hypopituitarism has been recommended for the patients with traumatic brain injury and patients with a history of radiation exposure on the head. The natural history of hypopituitarism depends on the severity of damage leading to partial or complete hormonal deficiency. If left untreated can lead to critical consequences. Complications of hypopituitarism include adrenal crisis, osteoporosis, electrolyte abnormalities, and diabetes mellitus. Hypopituitarism is often associated with vascular conditions and has a high mortality rate. Hypopituitarism has a good prognosis as long as the hormonal replacement therapy is given adequately. A positive history of head trauma, adenoma, a lesion such as a sellar lesion, or any symptom related to pituitary hormonal deficiency is suggestive of hypopituitarism. Patients of hypopituitarism may be asymptomatic or show symptoms which can be nonspecific or specific for the deficient hormone. Patients with acute onset of hypopituitarism can present with a headache, nausea, vomiting, visual impairment, fatigue, cold intolerance, hypotension, and dizziness. Patients with chronic hypopituitarism can present with pallor, weight loss, and anorexia. Clinical presentation in hypopituitarism depends upon the onset, the severity of hormonal deficiency and the number of deficient hormones. A subnormal or reduced concentration of pituitary hormones is diagnostic of hypopituitarism. Patients with complete hormonal deficiencies are mostly symptomatic and have low serum concentrations of both, the pituitary hormones as well as the target-organ hormones. Patients having partial hormonal deficiencies are detected by dynamic tests/stimulatory tests such as corticotropin stimulation, insulin-induced hypoglycemia, and metyrapone test. MRI scan with intravenous gadolinium is the imaging procedure of choice in the diagnosis of hypopituitarism . It is preferred over the CT scan as optic chiasmpituitary stalk, and cavernous sinuses can be seen in MRI. Treatment involves appropriate hormone replacement therapy, which must be taken for the rest of your life that results in significant improvement and reversal of not only the physical symptoms but also the psychological symptoms.

Historical Perspective

Discovery of the hypopituitarism returns back to 1914 when Dr. Simmonds described the disease for the first time. The diagnosis has been based on the patients' presentation only since then till 1950 when Dr. Yalow and Berson discovered the radioimmunoassay which helped in the measurement the hormonal levels. Through the 20th and 21st centuries, causes of the hypopituitarism were being described.

Classification

Hypopituitarism can be classified according to the site of the affected part of the pituitary gland either anterior or posterior. It can be also classified according to the etiology into primary or secondary. Based on the gland involvement, hypopituitarism can be classified into partial and panhypopituitarism

Pathophysiology

Hypopituitarism is believed to be caused mainly due to ischemia of the pituitary gland. This ischemia can be due to hemorrhagetumors, or brain injury. Compression of the blood vessels is one of the mechanisms that cause ischemia to the pituitary gland and leads to hypopituitarism. Pituitary adenomascause compression to the hypophyseal vessels leading to interruption in the pituitary gland function. Traumatic brain injury either primary or secondary also leads to pituitary gland dysfunction.

Causes

Hypopituitarism causes can be classified based upon the etiology such as congenital or acquired. Congenital causes include idiopathicanatomic lesion in the sella turcica, and CNS malformations. Common causes among acquired causes include pituitary macroadenoma, craniopharyngiomasurgery,radiationtraumatic brain injurySheehan's syndromeapoplexySAHmeningitishypophysitismeningiomalymphomahemochromatosis and Wegner'sgranulomatosis. Less common causes include Peri-natal insults, genetic causes, such as Kallman syndromePallister-Hall syndrome and Rieger syndrome, trauma and pituitary hypoplasia or aplasia. Hypopituitarism can be classified based upon the anatomical location of the pathology such ashypothalamus or pituitary gland.

Differentiating Hypopituitarism from Other Diseases

Hypopituitarism must be differentiated from Sheehan's syndromelymphocytic hypophysitispituitary apoplexyhypothyroidismAddison's diseaseempty sella syndromehypogonadotropic hypogonadismSimmonds' disease, hypoprolactinemia, and menopause.

Epidemiology and Demographics

There is no enough information regarding the epidemiology of hypopituitarism and it was only one study combining two cross-sectional studies performed regarding hypopituitarism epidemiology

Risk Factors

Hypopituitarism has a big variety of risk factors that increase the possibility of acquiring the disease. These risk factors incluide pituitary tumor, brain injury, head trauma, genetic defects, and brain surgery.

Screening

Screening of hypopituitarism has been recommended for the patients with traumatic brain injury and patients with a history of radiation exposure on the head

Natural History, Complications, and Prognosis

The natural history of hypopituitarism depends on the different clinical manifestations. If hypogonadism is left untreated, it will lead to decrease bone densityand osteoporosisVasopressin deficiency will end up to dehydration and electrolyte imbalance. Complications of hypopituitarism include adrenal crisis,pseudotumor cerebri, and diabetes mellitus. Hypopituitarism has a good prognosis as long as the hormonal replacement therapy is performed properly.

Diagnosis

History and Symptoms

A positive history of head trauma, any mass adenoma, a lesion ( such as a sellar lesion), or any symptom related to pituitary hormonal deficiency is suggestive of hypopituitarism. Patients of hypopituitarism may be asymptomatic or show symptoms which can be nonspecific or specific for the deficient hormone.

Physical Examination

Clinical presentation of hypopituitarism depends upon the onset, the severity of hormonal deficiency and the number of deficient hormones. Patients with hypopituitarism are ill appearing and usually look tired. Physical examination of patients with hypopituitarism is usually remarkable for the respective hormonal deficiency and present with features of that specific hormone such as hypothyroidism presents as delayed relaxation of tendon reflexes, bradycardia, coarse skin, puffy facies, and loss of eyebrowsACTH deficiency can present with postural hypotensiontachycardia, and weight loss.Gonadotropin deficiency may present with breast atrophy, soft testes, and regression of sexual characteristicsGrowth hormone deficiency can present with short stature, decreased sweating with impaired thermogenesis, and reduced muscle mass.

Laboratory Findings

A subnormal/reduced concentration of pituitary hormones is diagnostic of hypopituitarism. Corticotropin deficiency is detected by assessing basal cortisol secretion. Patients with intermediate cortisol levels need to be tested for ACTH reserve. There are several tests to check the ACTH reserve. Metyrapone test is preferred over others as it is applicable to all adults with no age restriction and has good correlation with stress related cortisol response. Patients with hypopituitarism are screened for hypothyroidism by measuring thyroxine, total thyroxine (T4) and triiodothyronine (T3) uptake, and free T4. Gonadotropin deficiency is confirmed with low estradiol, low testosterone, and low/normal serum FSH/LH. Growth hormone deficiency is confirmed with provocative tests(Insulin induced hypoglycemia and Arginine and GHRH combination) for GH secretion resulting in subnormal levels of serum GH levels, serum insulin-like growth factor-1 levels lower than the age-specific lower limit of normal and deficiency of more than one pituitary hormones e.g ACTH, TSH, and gonadotropins. ADH deficiency is assessed by water deprivation test and ADH suppression test. Prolactin deficiency can be confirmed by directly measuring prolactin levels on more than 1 occasion as its secretion is episodic but it is not done routinely as it is not clinically significant.

Electrocardiogram

There are no electrocardiogram findings associated with hypopituitarism.

X ray

There are no X ray findings associated with hypopituitarism.

CT scan

CT scan is preferred over MRI for visualization of calcification in a meningioma or a craniopharyngioma. Routine CT is insensitive to the diagnosis unless frank intracranial hemorrhage is present.The pituitary mass may be evident and be hyperdense.

MRI

MRI is the imaging procedure of choice in the diagnosis of hypopituitarism. It is preferred over the CT scan as optic chiasmpituitary stalk, and cavernous sinuses can be seen in MRI. An MRI lesion needs to be related to clinical and lab findings. The absence of an MRI lesion mostly indicates a non-organic etiology. Cystic lesions, such as Rathke's cleft cysts may have a low-intensity signal on T1-weighted images and a high-intensity signal on T2-weighted images. Meningiomas have a homogenous postcontrast enhancement than pituitary adenomas and have a suprasellar attachment. Hemorrhage into thepituitary gland results in a high-intensity signal on both T1- and T2-weighted images.

Ultrasound

There are no ultrasound findings associated with hypopituitarism.

Other imaging findings

There are no other specific imaging findings for hypopituitarism.

Other diagnostic studies

There are no other diagnostic findings for hypopituitarism.

Treatment

Medical Therapy

The mainstay of treatment is hormone replacement therapy and treating the underlying cause. ACTH deficiency is treated with glucocorticoids. Gonadotropin deficiency is treated with testosterone in men and estrogen with or without progesterone in women. Hypothyroidism is treated with levothyroxine. Growth hormone is usually replaced in children and replaced in adults only if symptomatic and after replacement of all other pituitary hormones. Hormone replacement therapy may be taken for the rest of life that results in significant improvement and reversal of not only the physical symptoms, but also the psychological symptoms.

Surgery

The feasibility of surgery depends on the clinical condition and underlying etiology. Following conditions need a surgical consideration: pituitary apoplexy , microadenomas with GH or ACTH hyper secretion and debulking macroadenomas with mass symptoms and resistant to medical therapy.

Primary Prevention

Hypopituitarism can be prevented by good obstetric care, minimizing radiation exposure and high-resolution microscopic hypophyseal surgery done by experienced neurosurgeons.

Secondary Prevention

Secondary prevention may be done by long term monitoring of patients for complications of hormonal replacement therapy and by dose adjustments in stressful situations.

References

Template:WH Template:WS