Alpha 1-antitrypsin deficiency pathophysiology: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 19: Line 19:
*The [[Proteases|protease]]-antiprotease imbalance in the [[lung]] has a major effect. In Z-variant of [[alpha1 antitrypsin]] deficiency, there is less [[alpha1 antitrypsin]] in the lung. The [[alpha1 antitrypsin]] that is present is 5 times less effective than normal [[alpha1 antitrypsin]]. The residual [[alpha1 antitrypsin]] is susceptible to inactivation by oxidation of the P1 methionine residue by free radicals from leukocytes or direct oxidation by cigarette smoke. The Z [[alpha1 antitrypsin]] also favors the formation of polymers in the lung. Z [[alpha1 antitrypsin]]-deficient patients have excess [[neutrophils]] in lavage fluid and in tissue sections of the lung possibly related to the [[chemoattractant]] effect of an excess of [[Leukotriene B4|leukotriene B4 (LTB4]]) and [[IL-8|interleukin (IL)-8]] and the [[polymers]] themselves. These circumstances of unopposed [[proteolytic]] [[enzyme activity]] and an increase in [[inflammatory]] conditions cause the trademark [[emphysema]] of this disease.   
*The [[Proteases|protease]]-antiprotease imbalance in the [[lung]] has a major effect. In Z-variant of [[alpha1 antitrypsin]] deficiency, there is less [[alpha1 antitrypsin]] in the lung. The [[alpha1 antitrypsin]] that is present is 5 times less effective than normal [[alpha1 antitrypsin]]. The residual [[alpha1 antitrypsin]] is susceptible to inactivation by oxidation of the P1 methionine residue by free radicals from leukocytes or direct oxidation by cigarette smoke. The Z [[alpha1 antitrypsin]] also favors the formation of polymers in the lung. Z [[alpha1 antitrypsin]]-deficient patients have excess [[neutrophils]] in lavage fluid and in tissue sections of the lung possibly related to the [[chemoattractant]] effect of an excess of [[Leukotriene B4|leukotriene B4 (LTB4]]) and [[IL-8|interleukin (IL)-8]] and the [[polymers]] themselves. These circumstances of unopposed [[proteolytic]] [[enzyme activity]] and an increase in [[inflammatory]] conditions cause the trademark [[emphysema]] of this disease.   
===Genetics===
===Genetics===
Alpha1-antitrypsin deficiency (AATD) is inherited in an autosomally-codominant pattern caused by mutations in the ''SERPINA1'' gene.The alpha-1 AT gene has been located on the long arm of chromosome 14 (gene locus:14q32.1) and has been successfully been sequenced and cloned. The SERPINA1 gene has six introns, seven axons and 12.2kb in length. There have been 120 different alleles for alpha-1 AT variants that have been described, but only 10-15 are associated with severe alpha-1 deficiency. Each allele has been given a letter code based upon electrophoretic mobility that varies according to protein charge from amino acid alterations on gel electrophoresis that is used to identify the PI phenotype. SERPINA1 gene mutation alters the configuration of the alpha1-antitrypsin molecule and prevents its release from hepatocytes. By far, the most common severe deficient variant is the Z allele, which is produced by substitution of a lysine for glutamate at position 342 of the molecule.  This accounts for 95% of the clinically recognized cases of severe alpha-1 AT deficiency. The 75 alleles can basically be divided into four groups:
*Alpha1-antitrypsin deficiency (AATD) is inherited in an autosomally-codominant pattern caused by mutations in the ''SERPINA1'' gene.
*Normal blood levels of alpha-1 antitrypsin are 1.5-3.5 [[gram|gm]]/[[litre|l]].
*The alpha-1 AT gene is located on the long arm of chromosome 14 (gene locus:14q32.1). The SERPINA1 gene has six introns, seven axons and 12.2kb in length. There have been 120 different alleles for alpha-1 AT variants that have been described, but only 10-15 are associated with severe alpha-1 deficiency.
*Each allele has been given a letter code based upon electrophoretic mobility that varies according to protein charge from amino acid alterations on gel electrophoresis that is used to identify the PI phenotype.  
*SERPINA1 gene mutation alters the configuration of the alpha1-antitrypsin molecule and prevents its release from hepatocytes. By far, the most common severe deficient variant is the Z allele, which is produced by substitution of a lysine for glutamate at position 342 of the molecule.  This accounts for 95% of the clinically recognized cases of severe alpha-1 AT deficiency. The 75 alleles can basically be divided into four groups:
 
* Normal – M alleles (normal phenotype is MM), found in 90% of the U.S. population, patients have normal lung function.
* Normal – M alleles (normal phenotype is MM), found in 90% of the U.S. population, patients have normal lung function.
* Deficient – Z allele (carried by 2-3% of the U.S. Caucasian population), have plasma levels of alpha-1 AT that is < 35% of normal.
* Deficient – Z allele (carried by 2-3% of the U.S. Caucasian population), have plasma levels of alpha-1 AT that is < 35% of normal.
Line 29: Line 34:


Differences in speed of migration of different protein variants on gel electrophoresis have been used to identify the PI phenotype, and these differences in migration relate to variations in protein charge resulting from amino acid alterations (Fig. 1).43 The M allele results in a protein with a medium rate of migration; the Z form of the protein has the slowest rate of migration. Some individuals inherit null alleles that result in protein levels that are not detectable. Individuals with a Z pattern on serum isoelectric focusing are referred to as phenotype PIZ (encompassing both PIZZ and PIZnull genotype variants). The S variant occurs at a frequency of 0.02–0.03 and is associated with mild reductions in serum AAT levels. The Z variant is associated with a severe reduction in serum AAT levels. The most common alleles are the M variants with allele frequencies of greater than 0.95 and normal AAT levels
Differences in speed of migration of different protein variants on gel electrophoresis have been used to identify the PI phenotype, and these differences in migration relate to variations in protein charge resulting from amino acid alterations (Fig. 1).43 The M allele results in a protein with a medium rate of migration; the Z form of the protein has the slowest rate of migration. Some individuals inherit null alleles that result in protein levels that are not detectable. Individuals with a Z pattern on serum isoelectric focusing are referred to as phenotype PIZ (encompassing both PIZZ and PIZnull genotype variants). The S variant occurs at a frequency of 0.02–0.03 and is associated with mild reductions in serum AAT levels. The Z variant is associated with a severe reduction in serum AAT levels. The most common alleles are the M variants with allele frequencies of greater than 0.95 and normal AAT levels
Normal blood levels of alpha-1 antitrypsin are 1.5-3.5 [[gram|gm]]/[[litre|l]].


===Molecular Biology===
===Molecular Biology===

Revision as of 15:02, 27 November 2017

https://https://www.youtube.com/watch?v=xNqg_DktFUQ%7C350}}

Alpha 1-antitrypsin deficiency Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Alpha 1-antitrypsin deficiency from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications, and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Alpha 1-antitrypsin deficiency pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Alpha 1-antitrypsin deficiency pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Alpha 1-antitrypsin deficiency pathophysiology

CDC on Alpha 1-antitrypsin deficiency pathophysiology

Alpha 1-antitrypsin deficiency pathophysiology in the news

Blogs on Alpha 1-antitrypsin deficiency pathophysiology

Directions to Hospitals Treating Alpha 1-antitrypsin deficiency

Risk calculators and risk factors for Alpha 1-antitrypsin deficiency pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mazia Fatima, MBBS [2]Cafer Zorkun, M.D., Ph.D. [3]

Overview

Pathophysiology

Genetics

  • Alpha1-antitrypsin deficiency (AATD) is inherited in an autosomally-codominant pattern caused by mutations in the SERPINA1 gene.
  • Normal blood levels of alpha-1 antitrypsin are 1.5-3.5 gm/l.
  • The alpha-1 AT gene is located on the long arm of chromosome 14 (gene locus:14q32.1). The SERPINA1 gene has six introns, seven axons and 12.2kb in length. There have been 120 different alleles for alpha-1 AT variants that have been described, but only 10-15 are associated with severe alpha-1 deficiency.
  • Each allele has been given a letter code based upon electrophoretic mobility that varies according to protein charge from amino acid alterations on gel electrophoresis that is used to identify the PI phenotype.
  • SERPINA1 gene mutation alters the configuration of the alpha1-antitrypsin molecule and prevents its release from hepatocytes. By far, the most common severe deficient variant is the Z allele, which is produced by substitution of a lysine for glutamate at position 342 of the molecule. This accounts for 95% of the clinically recognized cases of severe alpha-1 AT deficiency. The 75 alleles can basically be divided into four groups:
  • Normal – M alleles (normal phenotype is MM), found in 90% of the U.S. population, patients have normal lung function.
  • Deficient – Z allele (carried by 2-3% of the U.S. Caucasian population), have plasma levels of alpha-1 AT that is < 35% of normal.
  • Null – No detectable alpha-1 AT. Least common and most severe form of the disease.
  • Dysfunctional – Patients have a normal alpha-1 AT level, but the enzyme does not function properly.

In individuals with PiSS, PiMZ and PiSZ phenotypes, blood levels of A1AT are reduced to between 40 and 60 % of normal levels. This is sufficient to protect the lungs from the effects of elastase in people who do not smoke. However, in individuals with the PiZZ phenotype, A1AT levels are less than 15 % of normal, and patients are likely to develop emphysema at a young age; 50 % of these patients will develop liver cirrhosis, because the A1AT is not secreted properly and instead accumulates in the liver. A liver biopsy in such cases will reveal Periodic acid-Shiff (PAS)-positive, diastase-negative granules.


Differences in speed of migration of different protein variants on gel electrophoresis have been used to identify the PI phenotype, and these differences in migration relate to variations in protein charge resulting from amino acid alterations (Fig. 1).43 The M allele results in a protein with a medium rate of migration; the Z form of the protein has the slowest rate of migration. Some individuals inherit null alleles that result in protein levels that are not detectable. Individuals with a Z pattern on serum isoelectric focusing are referred to as phenotype PIZ (encompassing both PIZZ and PIZnull genotype variants). The S variant occurs at a frequency of 0.02–0.03 and is associated with mild reductions in serum AAT levels. The Z variant is associated with a severe reduction in serum AAT levels. The most common alleles are the M variants with allele frequencies of greater than 0.95 and normal AAT levels

Molecular Biology

  • Crystal structure of alpha1-antitrypsin enzyme is composed of three β sheets (A, B, C) and an exposed mobile reactive loop with a peptide sequence as a pseudosubstrate for the target proteinase enzyme. This loop consists of amino acids within this loop are the PI–PI′ residues, methionine serine, as these are binding sites for neutrophil elastase.
  • The Alpha-1 antitrypsin deficiency molecule is an acute phase glycoprotein.
  • Alpha-1 AT is the protease inhibitor in highest concentration in human plasma.Its functions include inhibition of trypsin and neutrophil elastase. Alpha-1 antitrypsin is a part of serpin class of serine protease inhibitors characterized by their unique ability to undergo a conformational change. Other members of the serpin class of protease inhibitors include antithrombin, C1-inhibitor, and the many inhibitors of plasminogen. An advantage of this molecular mobility is that it enables the inhibitor to trap its target protease form a complex that can remain stable for hours. A potential disadvantage, however, is that it makes the serpins more than usually vulnerable to dysfunctional mutations.

Associated Conditions

α1-antitrypsin deficiency has been associated with a number of diseases:

Gross Pathology

Microscopic Pathology

References


Template:WikiDoc Sources