Gastrointestinal varices natural history, complications and prognosis: Difference between revisions
Line 6: | Line 6: | ||
==Natural History== | ==Natural History== | ||
Gastrointestinal varices are an indication of increased portal venous pressure, especially in cirrhotic patients. The progressive increase in portal pressure leads to a progressive increase in size of the varices and an increased vascular wall tension. Variceal hemorrhage resulting from rupture occurs when the expanding force exceeds the maximal wall tension. The following sequence of events typically summarizes the natural history of gastrointestinal varices: | If untreated, recurrent variceal hemorrhage occurs in 60% of patients, usually within 1-2 years of the initial hemorrhage. Gastrointestinal varices are an indication of increased portal venous pressure, especially in cirrhotic patients. The progressive increase in portal pressure leads to a progressive increase in size of the varices and an increased vascular wall tension. Variceal hemorrhage resulting from rupture occurs when the expanding force exceeds the maximal wall tension. The following sequence of events typically summarizes the natural history of gastrointestinal varices: | ||
=== (i) No varices === | === (i) No varices === | ||
Line 32: | Line 32: | ||
* Six-week mortality is used as a predictor of prognosis for variceal hemorrhage<ref name="pmid26047908">{{cite journal |vauthors=de Franchis R |title=Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension |journal=J. Hepatol. |volume=63 |issue=3 |pages=743–52 |year=2015 |pmid=26047908 |doi=10.1016/j.jhep.2015.05.022 |url=}}</ref> | * Six-week mortality is used as a predictor of prognosis for variceal hemorrhage<ref name="pmid26047908">{{cite journal |vauthors=de Franchis R |title=Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension |journal=J. Hepatol. |volume=63 |issue=3 |pages=743–52 |year=2015 |pmid=26047908 |doi=10.1016/j.jhep.2015.05.022 |url=}}</ref> | ||
* The six-week mortality for variceal hemorrhage ranges from a low of 15% to a high of 25%<ref name="pmid24148622">{{cite journal |vauthors=Reverter E, Tandon P, Augustin S, Turon F, Casu S, Bastiampillai R, Keough A, Llop E, González A, Seijo S, Berzigotti A, Ma M, Genescà J, Bosch J, García-Pagán JC, Abraldes JG |title=A MELD-based model to determine risk of mortality among patients with acute variceal bleeding |journal=Gastroenterology |volume=146 |issue=2 |pages=412–19.e3 |year=2014 |pmid=24148622 |doi=10.1053/j.gastro.2013.10.018 |url=}}</ref><ref name="pmid23007003">{{cite journal |vauthors=Amitrano L, Guardascione MA, Manguso F, Bennato R, Bove A, DeNucci C, Lombardi G, Martino R, Menchise A, Orsini L, Picascia S, Riccio E |title=The effectiveness of current acute variceal bleed treatments in unselected cirrhotic patients: refining short-term prognosis and risk factors |journal=Am. J. Gastroenterol. |volume=107 |issue=12 |pages=1872–8 |year=2012 |pmid=23007003 |doi=10.1038/ajg.2012.313 |url=}}</ref> | * The six-week mortality for variceal hemorrhage ranges from a low of 15% to a high of 25%<ref name="pmid24148622">{{cite journal |vauthors=Reverter E, Tandon P, Augustin S, Turon F, Casu S, Bastiampillai R, Keough A, Llop E, González A, Seijo S, Berzigotti A, Ma M, Genescà J, Bosch J, García-Pagán JC, Abraldes JG |title=A MELD-based model to determine risk of mortality among patients with acute variceal bleeding |journal=Gastroenterology |volume=146 |issue=2 |pages=412–19.e3 |year=2014 |pmid=24148622 |doi=10.1053/j.gastro.2013.10.018 |url=}}</ref><ref name="pmid23007003">{{cite journal |vauthors=Amitrano L, Guardascione MA, Manguso F, Bennato R, Bove A, DeNucci C, Lombardi G, Martino R, Menchise A, Orsini L, Picascia S, Riccio E |title=The effectiveness of current acute variceal bleed treatments in unselected cirrhotic patients: refining short-term prognosis and risk factors |journal=Am. J. Gastroenterol. |volume=107 |issue=12 |pages=1872–8 |year=2012 |pmid=23007003 |doi=10.1038/ajg.2012.313 |url=}}</ref> | ||
* Factors associated with a poor prognosis include presence of bacterial infections and an HVPG >20 mm Hg<ref name="pmid25460564">{{cite journal |vauthors=Tandon P, Abraldes JG, Keough A, Bastiampillai R, Jayakumar S, Carbonneau M, Wong E, Kao D, Bain VG, Ma M |title=Risk of Bacterial Infection in Patients With Cirrhosis and Acute Variceal Hemorrhage, Based on Child-Pugh Class, and Effects of Antibiotics |journal=Clin. Gastroenterol. Hepatol. |volume=13 |issue=6 |pages=1189–96.e2 |year=2015 |pmid=25460564 |doi=10.1016/j.cgh.2014.11.019 |url=}}</ref> | |||
* The AIMS65 score is best predictor of mortality in patients with variceal bleeding. The score is calculated as follows: | * The AIMS65 score is best predictor of mortality in patients with variceal bleeding. The score is calculated as follows: |
Revision as of 16:19, 27 November 2017
Gastrointestinal varices Microchapters |
Differentiating Gastrointestinal varices from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Gastrointestinal varices natural history, complications and prognosis On the Web |
American Roentgen Ray Society Images of Gastrointestinal varices natural history, complications and prognosis |
FDA on Gastrointestinal varices natural history, complications and prognosis |
CDC on Gastrointestinal varices natural history, complications and prognosis |
Gastrointestinal varices natural history, complications and prognosis in the news |
Blogs on Gastrointestinal varices natural history, complications and prognosis |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:
Overview
Natural History
If untreated, recurrent variceal hemorrhage occurs in 60% of patients, usually within 1-2 years of the initial hemorrhage. Gastrointestinal varices are an indication of increased portal venous pressure, especially in cirrhotic patients. The progressive increase in portal pressure leads to a progressive increase in size of the varices and an increased vascular wall tension. Variceal hemorrhage resulting from rupture occurs when the expanding force exceeds the maximal wall tension. The following sequence of events typically summarizes the natural history of gastrointestinal varices:
(i) No varices
- Early stages of chronic liver disease, where the hepatic venous portal pressure gradient (HPVG) is less than 10 mmHg (normal)
(ii) Small varices - No hemorrhage
- Middle to late stages of chronic liver disease, where the hepatic venous portal pressure gradient (HPVG) is greater than equal to 10 mmHg
- Development rate is 8 % per year
(iii) Large varices - No hemorrhage
- The size increases with progression of cirrhosis and due to hyperdynamic circulation
- Progression from small to large varices is 8 % per year[1]
(iv) Variceal hemorrhage
- Intravascular pressure in varices greater than the variceal wall tension leads to variceal rupture
- Rate of rupture of esophageal varices is 5 - 15 % per year
- Rate of rupture of gastric varices is 25 % (greater in IGV1 and GOV2)[2]
(v) Recurrent hemorrhage
- Persistent increase in portal pressure leads to recurrence after treatement if the underlying cause is not addressed
Complications
Prognosis
- Six-week mortality is used as a predictor of prognosis for variceal hemorrhage[3]
- The six-week mortality for variceal hemorrhage ranges from a low of 15% to a high of 25%[4][5]
- Factors associated with a poor prognosis include presence of bacterial infections and an HVPG >20 mm Hg[6]
- The AIMS65 score is best predictor of mortality in patients with variceal bleeding. The score is calculated as follows:
Variable | Score |
---|---|
Albumin | 1 |
INR | 1 |
Systolic blood pressure | 1 |
Altered mental status | 1 |
Age > 65 years | 1 |
Interpretation of AIMS65 score
Score 0 = No risk
Score 1-2 = Moderate risk
Score > 2 = High risk
References
- ↑ "www.journal-of-hepatology.eu".
- ↑ Menasherian-Yaccobe L, Jaqua NT, Kenny P (2013). "Successful treatment of bleeding gastric varices with splenectomy in a patient with splenic, portal, and mesenteric thromboses". Case Rep Surg. 2013: 273531. doi:10.1155/2013/273531. PMC 3776550. PMID 24078893.
- ↑ de Franchis R (2015). "Expanding consensus in portal hypertension: Report of the Baveno VI Consensus Workshop: Stratifying risk and individualizing care for portal hypertension". J. Hepatol. 63 (3): 743–52. doi:10.1016/j.jhep.2015.05.022. PMID 26047908.
- ↑ Reverter E, Tandon P, Augustin S, Turon F, Casu S, Bastiampillai R, Keough A, Llop E, González A, Seijo S, Berzigotti A, Ma M, Genescà J, Bosch J, García-Pagán JC, Abraldes JG (2014). "A MELD-based model to determine risk of mortality among patients with acute variceal bleeding". Gastroenterology. 146 (2): 412–19.e3. doi:10.1053/j.gastro.2013.10.018. PMID 24148622.
- ↑ Amitrano L, Guardascione MA, Manguso F, Bennato R, Bove A, DeNucci C, Lombardi G, Martino R, Menchise A, Orsini L, Picascia S, Riccio E (2012). "The effectiveness of current acute variceal bleed treatments in unselected cirrhotic patients: refining short-term prognosis and risk factors". Am. J. Gastroenterol. 107 (12): 1872–8. doi:10.1038/ajg.2012.313. PMID 23007003.
- ↑ Tandon P, Abraldes JG, Keough A, Bastiampillai R, Jayakumar S, Carbonneau M, Wong E, Kao D, Bain VG, Ma M (2015). "Risk of Bacterial Infection in Patients With Cirrhosis and Acute Variceal Hemorrhage, Based on Child-Pugh Class, and Effects of Antibiotics". Clin. Gastroenterol. Hepatol. 13 (6): 1189–96.e2. doi:10.1016/j.cgh.2014.11.019. PMID 25460564.