Colorectal cancer pathophysiology: Difference between revisions
Line 15: | Line 15: | ||
<figure-inline>[[Image:Sporadic Colon Cancer3.jpg|1000x1000px]]</figure-inline> | <figure-inline><figure-inline>[[Image:Sporadic Colon Cancer3.jpg|1000x1000px]]</figure-inline></figure-inline> | ||
Line 34: | Line 34: | ||
===Colitis-associated colorectal cancers=== | ===Colitis-associated colorectal cancers=== | ||
The picture below depicts the molecular pathogenesis of colitis- | The picture below depicts the molecular pathogenesis of colitis-associated colon cancer<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref>. | ||
<figure-inline>[[Image:Colitis-associated colon cancer.jpg|800x800px]]</figure-inline> | <figure-inline><figure-inline>[[Image:Colitis-associated colon cancer.jpg|800x800px]]</figure-inline></figure-inline> | ||
At a microbiological level, the development of colitis-associated colorectal cancers (CRC) can be linked to defects within the [[cell cycle]]<ref name="pmid21190461">{{cite journal |author=Scully R |title=The spindle-assembly checkpoint, aneuploidy, and gastrointestinal cancer |journal=[[The New England Journal of Medicine]] |volume=363 |issue=27 |pages=2665–6 |year=2010 |month=December |pmid=21190461 |doi=10.1056/NEJMe1008017 |url=http://www.nejm.org/doi/abs/10.1056/NEJMe1008017?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed |accessdate=2011-12-12}}</ref> | At a [[microbiological]] level, the development of colitis-associated colorectal cancers (CRC) can be linked to defects within the [[cell cycle]].<ref name="pmid21190461">{{cite journal |author=Scully R |title=The spindle-assembly checkpoint, aneuploidy, and gastrointestinal cancer |journal=[[The New England Journal of Medicine]] |volume=363 |issue=27 |pages=2665–6 |year=2010 |month=December |pmid=21190461 |doi=10.1056/NEJMe1008017 |url=http://www.nejm.org/doi/abs/10.1056/NEJMe1008017?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed |accessdate=2011-12-12}}</ref> Although it is poorly understood, the following five factors may be responsible for its [[neoplastic]] changes:<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | ||
*Genetic instability | *Genetic instability | ||
*Epigenetic alteration | *Epigenetic alteration | ||
Line 47: | Line 47: | ||
====Genetic instability==== | ====Genetic instability==== | ||
*[[Aneuploidy]] is present in approximately 50%-90% of cancers<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | *[[Aneuploidy]] is present in approximately 50%-90% of cancers<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | ||
*A loss of the P53 function is common in colitis-associated CRC, although it can be found in sporadic colon cancer<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | *A loss of the [[P53 (protein)|P53]] function is common in colitis-associated CRC, although it can be found in sporadic colon cancer<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | ||
*A loss of the adenomatous polyposis ([[APC]]) function is common in sporadic CRC, although it can be found in colitis-associated colon cancer<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | *A loss of the [[Adenomatous polyposis coli|adenomatous polyposis]] ([[APC]]) function is common in sporadic CRC, although it can be found in colitis-associated colon cancer<ref name="Kim2014">{{cite journal|last1=Kim|first1=Eun Ran|title=Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis|journal=World Journal of Gastroenterology|volume=20|issue=29|year=2014|pages=9872|issn=1007-9327|doi=10.3748/wjg.v20.i29.9872}}</ref> | ||
*The following are two types of genomic instability<ref name="pmid1118685">{{cite journal| author=Zivić R, Bjelaković G, Koraćević D| title=[Amino acid constitution of the urine in children with rheumatic fever]. | journal=Reumatizam | year= 1975 | volume= 22 | issue= 1 | pages= 21-5 | pmid=1118685 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1118685 }} </ref> | *The following are two types of genomic instability<ref name="pmid1118685">{{cite journal| author=Zivić R, Bjelaković G, Koraćević D| title=[Amino acid constitution of the urine in children with rheumatic fever]. | journal=Reumatizam | year= 1975 | volume= 22 | issue= 1 | pages= 21-5 | pmid=1118685 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=1118685 }} </ref> | ||
:*Chromosomal instability (CIN) occurs when either whole chromosomes or parts of chromosomes are duplicated or deleted; it | :*Chromosomal instability (CIN) occurs when either whole [[chromosomes]] or parts of [[chromosomes]] are duplicated or deleted; it occurs with 85% frequency | ||
:*[[Microsatellite instability]] (MSI) is the condition of genetic hypermutability that results from impaired DNA mismatch repair; it | :*[[Microsatellite instability]] (MSI) is the condition of genetic hypermutability that results from impaired [[DNA mismatch repair]]; it occurs with 15% frequency | ||
====Epigenetic alteration==== | ====Epigenetic alteration==== | ||
*Sporadic CRC can develop from [[dysplasia]] in 1 or 2 foci of the colon<ref name="pmid19589728">{{cite journal| author=Kraus S, Arber N| title=Inflammation and colorectal cancer. | journal=Curr Opin Pharmacol | year= 2009 | volume= 9 | issue= 4 | pages= 405-10 | pmid=19589728 | doi=10.1016/j.coph.2009.06.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19589728 | *Sporadic CRC can develop from [[dysplasia]] in 1 or 2 foci of the colon<ref name="pmid19589728">{{cite journal| author=Kraus S, Arber N| title=Inflammation and colorectal cancer. | journal=Curr Opin Pharmacol | year= 2009 | volume= 9 | issue= 4 | pages= 405-10 | pmid=19589728 | doi=10.1016/j.coph.2009.06.006 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=19589728 }} </ref> | ||
*Colitis-associated CRC can develop from multifocal dysplasia | *Colitis-associated CRC can develop from multifocal dysplasia<ref name="pmid12702969">{{cite journal| author=Itzkowitz S| title=Colon carcinogenesis in inflammatory bowel disease: applying molecular genetics to clinical practice. | journal=J Clin Gastroenterol | year= 2003 | volume= 36 | issue= 5 Suppl | pages= S70-4; discussion S94-6 | pmid=12702969 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12702969 }} </ref> | ||
:*This indicates a field change effect where large areas of cells within the colon are affected by carcinogenic alterations | :*This indicates a field change effect where large areas of cells within the colon are affected by [[carcinogenic]] alterations | ||
====Chronic inflammation==== | ====Chronic inflammation==== | ||
*[[COX-2]] is triggered by inflammatory stimuli such as [[IL-1]], IFN-γ, and [[TNF-α]]<ref name="pmid23898071">{{cite journal| author=Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, Syrjänen K, El-Faitori O et al.| title=High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. | journal=Anticancer Res | year= 2013 | volume= 33 | issue= 8 | pages= 3137-43 | pmid=23898071 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23898071 }} </ref> | *[[COX-2]] is triggered by inflammatory stimuli such as [[IL-1]], [[Interferon-gamma|IFN-γ,]] and [[TNF-α]]<ref name="pmid23898071">{{cite journal| author=Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, Syrjänen K, El-Faitori O et al.| title=High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. | journal=Anticancer Res | year= 2013 | volume= 33 | issue= 8 | pages= 3137-43 | pmid=23898071 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23898071 }} </ref> | ||
*COX-2 expression is elevated in approximately 85% of [[adenocarcinomas]]<ref name="pmid23898071">{{cite journal| author=Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, Syrjänen K, El-Faitori O et al.| title=High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. | journal=Anticancer Res | year= 2013 | volume= 33 | issue= 8 | pages= 3137-43 | pmid=23898071 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23898071 }} </ref> | *[[COX-2]] expression is elevated in approximately 85% of [[adenocarcinomas]]<ref name="pmid23898071">{{cite journal| author=Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, Syrjänen K, El-Faitori O et al.| title=High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. | journal=Anticancer Res | year= 2013 | volume= 33 | issue= 8 | pages= 3137-43 | pmid=23898071 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23898071 }} </ref> | ||
====Oxidative stress==== | ====Oxidative stress==== | ||
*[[Oxidative stress]] results from inflammatory reactions which include inflammatory cells, activated [[neutrophils]], and [[macrophages]] | *[[Oxidative stress]] results from inflammatory reactions which include inflammatory cells, activated [[neutrophils]], and [[macrophages]] | ||
*[[Macrophages]] produce large amounts of reactive oxygen and nitrogen species (RONS)<ref name="pmid21530747">{{cite journal| author=Ullman TA, Itzkowitz SH| title=Intestinal inflammation and cancer. | journal=Gastroenterology | year= 2011 | volume= 140 | issue= 6 | pages= 1807-16 | pmid=21530747 | doi=10.1053/j.gastro.2011.01.057 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21530747 }} </ref> | *[[Macrophages]] produce large amounts of [[reactive oxygen]] and [[nitrogen species]] (RONS)<ref name="pmid21530747">{{cite journal| author=Ullman TA, Itzkowitz SH| title=Intestinal inflammation and cancer. | journal=Gastroenterology | year= 2011 | volume= 140 | issue= 6 | pages= 1807-16 | pmid=21530747 | doi=10.1053/j.gastro.2011.01.057 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21530747 }} </ref> | ||
*RONs can interact with key genes involved in carcinogenic pathways such as [[P53]] and [[DNA mismatch repair]] genes<ref name="pmid21530747">{{cite journal| author=Ullman TA, Itzkowitz SH| title=Intestinal inflammation and cancer. | journal=Gastroenterology | year= 2011 | volume= 140 | issue= 6 | pages= 1807-16 | pmid=21530747 | doi=10.1053/j.gastro.2011.01.057 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21530747 }} </ref> | *RONs can interact with key genes involved in carcinogenic pathways such as [[P53]] and [[DNA mismatch repair]] genes<ref name="pmid21530747">{{cite journal| author=Ullman TA, Itzkowitz SH| title=Intestinal inflammation and cancer. | journal=Gastroenterology | year= 2011 | volume= 140 | issue= 6 | pages= 1807-16 | pmid=21530747 | doi=10.1053/j.gastro.2011.01.057 | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=21530747 }} </ref> | ||
====Intestinal microbiota==== | ====Intestinal microbiota==== | ||
* The Modification of enteric flora by probiotic lactobacilli is a proposed mechanism may contribute to the development of colitis-associated cancer<ref name="pmid11472326">{{cite journal| author=O'Mahony L, Feeney M, O'Halloran S, Murphy L, Kiely B, Fitzgibbon J et al.| title=Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. | journal=Aliment Pharmacol Ther | year= 2001 | volume= 15 | issue= 8 | pages= 1219-25 | pmid=11472326 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11472326 }} </ref> | * The Modification of enteric flora by probiotic [[lactobacilli]] is a proposed mechanism that may contribute to the development of colitis-associated cancer<ref name="pmid11472326">{{cite journal| author=O'Mahony L, Feeney M, O'Halloran S, Murphy L, Kiely B, Fitzgibbon J et al.| title=Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. | journal=Aliment Pharmacol Ther | year= 2001 | volume= 15 | issue= 8 | pages= 1219-25 | pmid=11472326 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=11472326 }} </ref> | ||
==Genetics== | ==Genetics== | ||
CRC can be grouped into three categories from a genetic perspective<ref name="pmid25276405">{{cite journal| author=Schlussel AT, Gagliano RA, Seto-Donlon S, Eggerding F, Donlon T, Berenberg J et al.| title=The evolution of colorectal cancer genetics-Part 1: from discovery to practice. | journal=J Gastrointest Oncol | year= 2014 | volume= 5 | issue= 5 | pages= 326-35 | pmid=25276405 | doi=10.3978/j.issn.2078-6891.2014.069 | pmc=PMC4173047 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25276405 }} </ref> | CRC can be grouped into three categories from a genetic perspective:<ref name="pmid25276405">{{cite journal| author=Schlussel AT, Gagliano RA, Seto-Donlon S, Eggerding F, Donlon T, Berenberg J et al.| title=The evolution of colorectal cancer genetics-Part 1: from discovery to practice. | journal=J Gastrointest Oncol | year= 2014 | volume= 5 | issue= 5 | pages= 326-35 | pmid=25276405 | doi=10.3978/j.issn.2078-6891.2014.069 | pmc=PMC4173047 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=25276405 }} </ref> | ||
*Sporadic (75% of cases) - no apparent indication of a hereditary component | *Sporadic (75% of cases) - no apparent indication of a hereditary component | ||
*[[Familial]] (20% of cases) - multifactorial hereditary factors or common exposures to non-genetic risk factors or both | *[[Familial]] (20% of cases) - [[Multifactorial inheritance|multifactorial hereditary]] factors or common exposures to non-genetic risk factors or both | ||
*[[Hereditary]] (10% of cases) | *[[Hereditary]] (10% of cases) | ||
:*Hereditary nonpolyposis colon cancer ([[HNPCC]]) also known as Lynch Syndrome results from mutations in hMLH1, hMSH2, hMSH6, and PMS2 | :*[[Hereditary nonpolyposis colorectal cancer|Hereditary nonpolyposis colon cancer]] ([[HNPCC]]) also known as [[Lynch Syndrome I|Lynch Syndrome]] results from mutations in hMLH1, hMSH2, hMSH6, and PMS2 | ||
:*[[Familial adenomatous polyposis]] ([[FAP]]) results from mutations in the APC gene located on chromosome 5p22.2 | :*[[Familial adenomatous polyposis]] ([[FAP]]) results from mutations in the [[APC gene]] located on chromosome 5p22.2 | ||
:*MUTYH-associated polyposis ([[MAP]]) results from biallelic mutation of the MutY, E. Coli, Homolog gene which functions to remove [[adenine]] residues mispaired with 8-hydroxyguanine in DNA | :*MUTYH-associated polyposis ([[MAP]]) results from biallelic mutation of the MutY, [[E. Coli]], Homolog gene which functions to remove [[adenine]] residues mispaired with 8-hydroxyguanine in DNA | ||
==Gross Pathology== | ==Gross Pathology== |
Revision as of 15:17, 14 December 2017
Colorectal cancer Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Colorectal cancer pathophysiology On the Web |
American Roentgen Ray Society Images of Colorectal cancer pathophysiology |
Risk calculators and risk factors for Colorectal cancer pathophysiology |
To view the pathophysiology of familial adenomatous polyposis (FAP), click here
To view the pathophysiology of hereditary nonpolyposis colorectal cancer (HNPCC), click here
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Saarah T. Alkhairy, M.D.; Elliot B. Tapper, M.D.
Overview
The pathogenesis of colorectal carcinoma (CRC) involves the molecular pathways for both sporadic and colitis-associated CRC. Sporadic instability originates from the epithelial cells that line the colon or rectum. Colitis-associated CRC includes genetic instability, epigenetic alteration, chronic inflammation, oxidative stress, and intestinal microbiota. Right-sided and left-sided tumors differ in their gross pathology depending on glandular architecture, cellular pleomorphism, and mucosecretion of the predominant pattern. Adenocarcinoma may present in three degrees of differentiation: well, moderately, and poorly differentiated.
Pathogenesis
Sporadic colorectal cancers
The picture below depicts the molecular pathogenesis of sporadic colon cancer.[1]
<figure-inline><figure-inline></figure-inline></figure-inline>
Sporadic colorectal cancer originates from the epithelial cells that line the colon or rectum. It may involve the following:[2]
- The APC gene
- The TP53 gene
- It produces the p53 protein, which monitors cell division and promotes apoptosis if there are cell defects
- If there is a mutation, there is no control over cell division or apoptosis
- Both of these proteins are responsible for apoptosis, but are deactivated in CRC
- These genes stimulate the cell to divide
- If there is a mutation of an oncogene, there may be an over-activation of cell proliferation
- Examples are K-RAS and RAF
Colitis-associated colorectal cancers
The picture below depicts the molecular pathogenesis of colitis-associated colon cancer[1].
<figure-inline><figure-inline></figure-inline></figure-inline>
At a microbiological level, the development of colitis-associated colorectal cancers (CRC) can be linked to defects within the cell cycle.[3] Although it is poorly understood, the following five factors may be responsible for its neoplastic changes:[1]
- Genetic instability
- Epigenetic alteration
- Chronic inflammation
- Oxidative stress
- Intestinal microbiota
Genetic instability
- Aneuploidy is present in approximately 50%-90% of cancers[1]
- A loss of the P53 function is common in colitis-associated CRC, although it can be found in sporadic colon cancer[1]
- A loss of the adenomatous polyposis (APC) function is common in sporadic CRC, although it can be found in colitis-associated colon cancer[1]
- The following are two types of genomic instability[4]
- Chromosomal instability (CIN) occurs when either whole chromosomes or parts of chromosomes are duplicated or deleted; it occurs with 85% frequency
- Microsatellite instability (MSI) is the condition of genetic hypermutability that results from impaired DNA mismatch repair; it occurs with 15% frequency
Epigenetic alteration
- Sporadic CRC can develop from dysplasia in 1 or 2 foci of the colon[5]
- Colitis-associated CRC can develop from multifocal dysplasia[6]
- This indicates a field change effect where large areas of cells within the colon are affected by carcinogenic alterations
Chronic inflammation
- COX-2 is triggered by inflammatory stimuli such as IL-1, IFN-γ, and TNF-α[7]
- COX-2 expression is elevated in approximately 85% of adenocarcinomas[7]
Oxidative stress
- Oxidative stress results from inflammatory reactions which include inflammatory cells, activated neutrophils, and macrophages
- Macrophages produce large amounts of reactive oxygen and nitrogen species (RONS)[8]
- RONs can interact with key genes involved in carcinogenic pathways such as P53 and DNA mismatch repair genes[8]
Intestinal microbiota
- The Modification of enteric flora by probiotic lactobacilli is a proposed mechanism that may contribute to the development of colitis-associated cancer[9]
Genetics
CRC can be grouped into three categories from a genetic perspective:[10]
- Sporadic (75% of cases) - no apparent indication of a hereditary component
- Familial (20% of cases) - multifactorial hereditary factors or common exposures to non-genetic risk factors or both
- Hereditary (10% of cases)
- Hereditary nonpolyposis colon cancer (HNPCC) also known as Lynch Syndrome results from mutations in hMLH1, hMSH2, hMSH6, and PMS2
- Familial adenomatous polyposis (FAP) results from mutations in the APC gene located on chromosome 5p22.2
- MUTYH-associated polyposis (MAP) results from biallelic mutation of the MutY, E. Coli, Homolog gene which functions to remove adenine residues mispaired with 8-hydroxyguanine in DNA
Gross Pathology
- Right-sided tumors (ascending colon and cecum) tends to grow outwards from one location in the bowel wall (exophytic)
- Left-sided tumours tend to be circumferential
Microscopic Pathology
- Tumor cells form irregular tubular structures, harboring pleuristratification, multiple lumens, and reduced stroma
- Sometimes, tumor cells are discohesive and secrete mucus, which invades the interstitium producing large pools of mucus/colloid (optically "empty" spaces)
- If the mucus remains inside the tumor cell, it pushes the nucleus at the periphery (signet-ring cell)
- Depending on glandular architecture, cellular pleomorphism, and mucosecretion of the predominant pattern, adenocarcinoma may present in one of three degrees of differentiation: well, moderately, or poorly differentiated[11]
Grades of Colorectal Cancer
The grade describes how closely the cancer looks like normal tissue when seen under a microscope. This is sometimes used to distinguish whether a patient should get adjuvant treatment with chemotherapy after surgery.
- Grade 1 - Well differentiated
- Grade 2 - Moderately differentiated
- Grade 3 - Poorly differentiated
- Grade 4 - Undifferentiated
Video
{{#ev:youtube|Sh65aXndqXk}}
References
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 Kim, Eun Ran (2014). "Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis". World Journal of Gastroenterology. 20 (29): 9872. doi:10.3748/wjg.v20.i29.9872. ISSN 1007-9327.
- ↑ Markowitz SD, Bertagnolli MM (2009). "Molecular origins of cancer: Molecular basis of colorectal cancer". N Engl J Med. 361 (25): 2449–60. doi:10.1056/NEJMra0804588. PMC 2843693. PMID 20018966.
- ↑ Scully R (2010). "The spindle-assembly checkpoint, aneuploidy, and gastrointestinal cancer". The New England Journal of Medicine. 363 (27): 2665–6. doi:10.1056/NEJMe1008017. PMID 21190461. Retrieved 2011-12-12. Unknown parameter
|month=
ignored (help) - ↑ Zivić R, Bjelaković G, Koraćević D (1975). "[Amino acid constitution of the urine in children with rheumatic fever]". Reumatizam. 22 (1): 21–5. PMID 1118685.
- ↑ Kraus S, Arber N (2009). "Inflammation and colorectal cancer". Curr Opin Pharmacol. 9 (4): 405–10. doi:10.1016/j.coph.2009.06.006. PMID 19589728.
- ↑ Itzkowitz S (2003). "Colon carcinogenesis in inflammatory bowel disease: applying molecular genetics to clinical practice". J Clin Gastroenterol. 36 (5 Suppl): S70–4, discussion S94-6. PMID 12702969.
- ↑ 7.0 7.1 Elzagheid A, Emaetig F, Alkikhia L, Buhmeida A, Syrjänen K, El-Faitori O; et al. (2013). "High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer". Anticancer Res. 33 (8): 3137–43. PMID 23898071.
- ↑ 8.0 8.1 Ullman TA, Itzkowitz SH (2011). "Intestinal inflammation and cancer". Gastroenterology. 140 (6): 1807–16. doi:10.1053/j.gastro.2011.01.057. PMID 21530747.
- ↑ O'Mahony L, Feeney M, O'Halloran S, Murphy L, Kiely B, Fitzgibbon J; et al. (2001). "Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice". Aliment Pharmacol Ther. 15 (8): 1219–25. PMID 11472326.
- ↑ Schlussel AT, Gagliano RA, Seto-Donlon S, Eggerding F, Donlon T, Berenberg J; et al. (2014). "The evolution of colorectal cancer genetics-Part 1: from discovery to practice". J Gastrointest Oncol. 5 (5): 326–35. doi:10.3978/j.issn.2078-6891.2014.069. PMC 4173047. PMID 25276405.
- ↑ Pathology atlas (in Romanian)