S100A4: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
m Bot: HTTP→HTTPS (v470)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''[[S100 protein|S100]] calcium-binding protein A4''' ('''S100A4''') is a [[protein]] that in humans is encoded by the ''S100A4'' [[gene]].<ref name="pmid3155863">{{cite journal | vauthors = Stoler A, Bouck N | title = Identification of a single chromosome in the normal human genome essential for suppression of hamster cell transformation | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 82 | issue = 2 | pages = 570–4  | date = March 1985 | pmid = 3155863 | pmc = 397082 | doi = 10.1073/pnas.82.2.570 }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image = PBB_Protein_S100A4_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1m31.
| PDB = {{PDB2|1m31}}
| Name = S100 calcium binding protein A4
| HGNCid = 10494
| Symbol = S100A4
| AltSymbols =; MTS1; 18A2; 42A; CAPL; P9KA; PEL98
| OMIM = 114210
| ECnumber = 
| Homologene = 7924
| MGIid = 1330282
| GeneAtlas_image1 = PBB_GE_S100A4_203186_s_at_tn.png
| Function = {{GNF_GO|id=GO:0005509 |text = calcium ion binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component =
| Process =
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 6275
    | Hs_Ensembl = ENSG00000196154
    | Hs_RefseqProtein = NP_002952
    | Hs_RefseqmRNA = NM_002961
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 1
    | Hs_GenLoc_start = 151782713
    | Hs_GenLoc_end = 151789236
    | Hs_Uniprot = P26447
    | Mm_EntrezGene = 20198
    | Mm_Ensembl = ENSMUSG00000001020
    | Mm_RefseqmRNA = NM_011311
    | Mm_RefseqProtein = NP_035441
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 3
    | Mm_GenLoc_start = 90689694
    | Mm_GenLoc_end = 90691967
    | Mm_Uniprot = Q545V2
  }}
}}
'''S100 calcium binding protein A4''', also known as '''S100A4''', is a human [[gene]].


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
The protein encoded by this gene is a member of the S100 family of proteins containing 2 [[EF-hand]] calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in motility, invasion, and tubulin polymerization. Chromosomal rearrangements and altered expression of this gene have been implicated in tumor metastasis. Multiple alternatively spliced variants, encoding the same protein, have been identified.<ref>{{cite web | title = Entrez Gene: S100A4 S100 calcium binding protein A4| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6275| accessdate = }}</ref>
{{PBB_Summary
| section_title =
| summary_text = The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in motility, invasion, and tubulin polymerization. Chromosomal rearrangements and altered expression of this gene have been implicated in tumor metastasis. Multiple alternatively spliced variants, encoding the same protein, have been identified.<ref>{{cite web | title = Entrez Gene: S100A4 S100 calcium binding protein A4| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6275| accessdate = }}</ref>
}}


==References==
== Interactions ==
{{reflist|2}}
 
==Further reading==
S100A4 has been shown to [[Protein-protein interaction|interact]] with [[S100 calcium binding protein A1]].<ref name=pmid16189514>{{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8  | date = October 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }}</ref><ref name=pmid10753920>{{cite journal | vauthors = Wang G, Rudland PS, White MR, Barraclough R | title = Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1 | journal = J. Biol. Chem. | volume = 275 | issue = 15 | pages = 11141–6  | date = April 2000 | pmid = 10753920 | doi = 10.1074/jbc.275.15.11141 }}</ref>
 
== Therapeutic targeting for cancer ==
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. Research demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results 5C3 was developed, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.<ref>{{cite journal | vauthors = Hernández JL, Padilla L, Dakhel S, Coll T, Hervas R, Adan J, Masa M, Mitjans F, Martinez JM, Coma S, Rodríguez L, Noé V, Ciudad CJ, Blasco F, Messeguer R | title = Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody. | journal = PLOS ONE | volume = 8| issue = | pages = e72480| date = September 2013 | pmid = 24023743| doi = 10.1371/journal.pone.0072480 | pmc=3762817}}</ref>
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Kalluri R, Neilson EG | title = Epithelial-mesenchymal transition and its implications for fibrosis | journal = J. Clin. Invest. | volume = 112 | issue = 12 | pages = 1776–84 | year = 2003 | pmid = 14679171 | pmc = 297008 | doi = 10.1172/JCI20530 }}
| citations =
* {{cite journal | vauthors = Garrett SC, Varney KM, Weber DJ, Bresnick AR | title = S100A4, a mediator of metastasis | journal = J. Biol. Chem. | volume = 281 | issue = 2 | pages = 677–80 | year = 2006 | pmid = 16243835 | doi = 10.1074/jbc.R500017200 }}
*{{cite journal | author=Kalluri R, Neilson EG |title=Epithelial-mesenchymal transition and its implications for fibrosis. |journal=J. Clin. Invest. |volume=112 |issue= 12 |pages= 1776-84 |year= 2004 |pmid= 14679171 |doi= 10.1172/JCI200320530 }}
* {{cite journal | vauthors = Tarabykina S, Griffiths TR, Tulchinsky E, Mellon JK, Bronstein IB, Kriajevska M | title = Metastasis-associated protein S100A4: spotlight on its role in cell migration | journal = Curr Cancer Drug Targets | volume = 7 | issue = 3 | pages = 217–28 | year = 2007 | pmid = 17504119 | doi = 10.2174/156800907780618329 }}
*{{cite journal | author=Garrett SC, Varney KM, Weber DJ, Bresnick AR |title=S100A4, a mediator of metastasis. |journal=J. Biol. Chem. |volume=281 |issue= 2 |pages= 677-80 |year= 2006 |pmid= 16243835 |doi= 10.1074/jbc.R500017200 }}
* {{cite journal | vauthors = Tulchinsky E, Ford HL, Kramerov D, Reshetnyak E, Grigorian M, Zain S, Lukanidin E | title = Transcriptional analysis of the mts1 gene with specific reference to 5' flanking sequences | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 89 | issue = 19 | pages = 9146–50 | year = 1992 | pmid = 1329089 | pmc = 50082 | doi = 10.1073/pnas.89.19.9146 }}
*{{cite journal | author=Tarabykina S, Griffiths TR, Tulchinsky E, ''et al.'' |title=Metastasis-associated protein S100A4: spotlight on its role in cell migration. |journal=Current cancer drug targets |volume=7 |issue= 3 |pages= 217-28 |year= 2007 |pmid= 17504119 |doi= }}
* {{cite journal | vauthors = Engelkamp D, Schäfer BW, Erne P, Heizmann CW | title = S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart | journal = Biochemistry | volume = 31 | issue = 42 | pages = 10258–64 | year = 1992 | pmid = 1384693 | doi = 10.1021/bi00157a012 }}
*{{cite journal | author=Tulchinsky E, Ford HL, Kramerov D, ''et al.'' |title=Transcriptional analysis of the mts1 gene with specific reference to 5' flanking sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 19 |pages= 9146-50 |year= 1992 |pmid= 1329089 |doi= }}
* {{cite journal | vauthors = Tomida Y, Terasawa M, Kobayashi R, Hidaka H | title = Calcyclin and calvasculin exist in human platelets | journal = Biochem. Biophys. Res. Commun. | volume = 189 | issue = 3 | pages = 1310–6 | year = 1992 | pmid = 1482346 | doi = 10.1016/0006-291X(92)90216-8 }}
*{{cite journal | author=Engelkamp D, Schäfer BW, Erne P, Heizmann CW |title=S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart. |journal=Biochemistry |volume=31 |issue= 42 |pages= 10258-64 |year= 1992 |pmid= 1384693 |doi= }}
* {{cite journal | vauthors = Ambartsumian N, Tarabykina S, Grigorian M, Tulchinsky E, Hulgaard E, Georgiev G, Lukanidin E | title = Characterization of two splice variants of metastasis-associated human mts1 gene | journal = Gene | volume = 159 | issue = 1 | pages = 125–30 | year = 1995 | pmid = 7607566 | doi = 10.1016/0378-1119(94)00778-Q }}
*{{cite journal | author=Tomida Y, Terasawa M, Kobayashi R, Hidaka H |title=Calcyclin and calvasculin exist in human platelets. |journal=Biochem. Biophys. Res. Commun. |volume=189 |issue= 3 |pages= 1310-6 |year= 1993 |pmid= 1482346 |doi= }}
* {{cite journal | vauthors = Schäfer BW, Wicki R, Engelkamp D, Mattei MG, Heizmann CW | title = Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family | journal = Genomics | volume = 25 | issue = 3 | pages = 638–43 | year = 1995 | pmid = 7759097 | doi = 10.1016/0888-7543(95)80005-7 }}
*{{cite journal | author=Stoler A, Bouck N |title=Identification of a single chromosome in the normal human genome essential for suppression of hamster cell transformation. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=82 |issue= 2 |pages= 570-4 |year= 1985 |pmid= 3155863 |doi= }}
* {{cite journal | vauthors = Takenaga K, Nakamura Y, Sakiyama S, Hasegawa Y, Sato K, Endo H | title = Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin | journal = J. Cell Biol. | volume = 124 | issue = 5 | pages = 757–68 | year = 1994 | pmid = 8120097 | pmc = 2119958 | doi = 10.1083/jcb.124.5.757 }}
*{{cite journal | author=Ambartsumian N, Tarabykina S, Grigorian M, ''et al.'' |title=Characterization of two splice variants of metastasis-associated human mts1 gene. |journal=Gene |volume=159 |issue= 1 |pages= 125-30 |year= 1995 |pmid= 7607566 |doi= }}
* {{cite journal | vauthors = Pedrocchi M, Schäfer BW, Durussel I, Cox JA, Heizmann CW | title = Purification and characterization of the recombinant human calcium-binding S100 proteins CAPL and CACY | journal = Biochemistry | volume = 33 | issue = 21 | pages = 6732–8 | year = 1994 | pmid = 8204608 | doi = 10.1021/bi00187a045 }}
*{{cite journal | author=Schäfer BW, Wicki R, Engelkamp D, ''et al.'' |title=Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. |journal=Genomics |volume=25 |issue= 3 |pages= 638-43 |year= 1995 |pmid= 7759097 |doi= }}
* {{cite journal | vauthors = Engelkamp D, Schäfer BW, Mattei MG, Erne P, Heizmann CW | title = Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 90 | issue = 14 | pages = 6547–51 | year = 1993 | pmid = 8341667 | pmc = 46969 | doi = 10.1073/pnas.90.14.6547 }}
*{{cite journal | author=Takenaga K, Nakamura Y, Sakiyama S, ''et al.'' |title=Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin. |journal=J. Cell Biol. |volume=124 |issue= 5 |pages= 757-68 |year= 1994 |pmid= 8120097 |doi= }}
* {{cite journal | vauthors = Ford HL, Silver DL, Kachar B, Sellers JR, Zain SB | title = Effect of Mts1 on the structure and activity of nonmuscle myosin II | journal = Biochemistry | volume = 36 | issue = 51 | pages = 16321–7 | year = 1997 | pmid = 9405067 | doi = 10.1021/bi971182l }}
*{{cite journal | author=Pedrocchi M, Schäfer BW, Durussel I, ''et al.'' |title=Purification and characterization of the recombinant human calcium-binding S100 proteins CAPL and CACY. |journal=Biochemistry |volume=33 |issue= 21 |pages= 6732-8 |year= 1994 |pmid= 8204608 |doi= }}
* {{cite journal | vauthors = Liu JH, Wei S, Burnette PK, Gamero AM, Hutton M, Djeu JY | title = Functional association of TGF-beta receptor II with cyclin B | journal = Oncogene | volume = 18 | issue = 1 | pages = 269–75 | year = 1999 | pmid = 9926943 | doi = 10.1038/sj.onc.1202263 }}
*{{cite journal | author=Engelkamp D, Schäfer BW, Mattei MG, ''et al.'' |title=Six S100 genes are clustered on human chromosome 1q21: identification of two genes coding for the two previously unreported calcium-binding proteins S100D and S100E. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=90 |issue= 14 |pages= 6547-51 |year= 1993 |pmid= 8341667 |doi= }}
* {{cite journal | vauthors = Wang G, Rudland PS, White MR, Barraclough R | title = Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1 | journal = J. Biol. Chem. | volume = 275 | issue = 15 | pages = 11141–6 | year = 2000 | pmid = 10753920 | doi = 10.1074/jbc.275.15.11141 }}
*{{cite journal | author=Ford HL, Silver DL, Kachar B, ''et al.'' |title=Effect of Mts1 on the structure and activity of nonmuscle myosin II. |journal=Biochemistry |volume=36 |issue= 51 |pages= 16321-7 |year= 1998 |pmid= 9405067 |doi= 10.1021/bi971182l }}
* {{cite journal | vauthors = Tarabykina S, Kriajevska M, Scott DJ, Hill TJ, Lafitte D, Derrick PJ, Dodson GG, Lukanidin E, Bronstein I | title = Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system | journal = FEBS Lett. | volume = 475 | issue = 3 | pages = 187–91 | year = 2000 | pmid = 10869553 | doi = 10.1016/S0014-5793(00)01652-5 }}
*{{cite journal | author=Liu JH, Wei S, Burnette PK, ''et al.'' |title=Functional association of TGF-beta receptor II with cyclin B. |journal=Oncogene |volume=18 |issue= 1 |pages= 269-75 |year= 1999 |pmid= 9926943 |doi= 10.1038/sj.onc.1202263 }}
* {{cite journal | vauthors = Tarabykina S, Scott DJ, Herzyk P, Hill TJ, Tame JR, Kriajevska M, Lafitte D, Derrick PJ, Dodson GG, Maitland NJ, Lukanidin EM, Bronstein IB | title = The dimerization interface of the metastasis-associated protein S100A4 (Mts1): in vivo and in vitro studies | journal = J. Biol. Chem. | volume = 276 | issue = 26 | pages = 24212–22 | year = 2001 | pmid = 11278510 | doi = 10.1074/jbc.M009477200 }}
*{{cite journal | author=Wang G, Rudland PS, White MR, Barraclough R |title=Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1. |journal=J. Biol. Chem. |volume=275 |issue= 15 |pages= 11141-6 |year= 2000 |pmid= 10753920 |doi= }}
* {{cite journal | vauthors = Grigorian M, Andresen S, Tulchinsky E, Kriajevska M, Carlberg C, Kruse C, Cohn M, Ambartsumian N, Christensen A, Selivanova G, Lukanidin E | title = Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction | journal = J. Biol. Chem. | volume = 276 | issue = 25 | pages = 22699–708 | year = 2001 | pmid = 11278647 | doi = 10.1074/jbc.M010231200 }}
*{{cite journal | author=Tarabykina S, Kriajevska M, Scott DJ, ''et al.'' |title=Heterocomplex formation between metastasis-related protein S100A4 (Mts1) and S100A1 as revealed by the yeast two-hybrid system. |journal=FEBS Lett. |volume=475 |issue= 3 |pages= 187-91 |year= 2000 |pmid= 10869553 |doi= }}
* {{cite journal | vauthors = Chen H, Fernig DG, Rudland PS, Sparks A, Wilkinson MC, Barraclough R | title = Binding to intracellular targets of the metastasis-inducing protein, S100A4 (p9Ka) | journal = Biochem. Biophys. Res. Commun. | volume = 286 | issue = 5 | pages = 1212–7 | year = 2001 | pmid = 11527429 | doi = 10.1006/bbrc.2001.5517 }}
*{{cite journal | author=Tarabykina S, Scott DJ, Herzyk P, ''et al.'' |title=The dimerization interface of the metastasis-associated protein S100A4 (Mts1): in vivo and in vitro studies. |journal=J. Biol. Chem. |volume=276 |issue= 26 |pages= 24212-22 |year= 2001 |pmid= 11278510 |doi= 10.1074/jbc.M009477200 }}
* {{cite journal | vauthors = Zhang H, Wang Z, Ding Y, Wang G, Wang X, Bartlam M, Tang H, Liu Y, Jiang F, Barraclough R, Rudland PS, Rao Z | title = Crystallization and preliminary crystallographic analysis of a metastasis-inducing protein, human S100A4 | journal = Acta Crystallogr. D | volume = 58 | issue = Pt 1 | pages = 127–9 | year = 2002 | pmid = 11752788 | doi = 10.1107/S090744490101650X }}
*{{cite journal | author=Grigorian M, Andresen S, Tulchinsky E, ''et al.'' |title=Tumor suppressor p53 protein is a new target for the metastasis-associated Mts1/S100A4 protein: functional consequences of their interaction. |journal=J. Biol. Chem. |volume=276 |issue= 25 |pages= 22699-708 |year= 2001 |pmid= 11278647 |doi= 10.1074/jbc.M010231200 }}
*{{cite journal | author=Chen H, Fernig DG, Rudland PS, ''et al.'' |title=Binding to intracellular targets of the metastasis-inducing protein, S100A4 (p9Ka). |journal=Biochem. Biophys. Res. Commun. |volume=286 |issue= 5 |pages= 1212-7 |year= 2001 |pmid= 11527429 |doi= 10.1006/bbrc.2001.5517 }}
*{{cite journal  | author=Zhang H, Wang Z, Ding Y, ''et al.'' |title=Crystallization and preliminary crystallographic analysis of a metastasis-inducing protein, human S100A4. |journal=Acta Crystallogr. D Biol. Crystallogr. |volume=58 |issue= Pt 1 |pages= 127-9 |year= 2002 |pmid= 11752788 |doi=  }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
{{PDB Gallery|geneid=6275}}
{{WikiDoc Sources}}
 
[[Category:S100 proteins]]

Revision as of 00:22, 27 October 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

S100 calcium-binding protein A4 (S100A4) is a protein that in humans is encoded by the S100A4 gene.[1]

Function

The protein encoded by this gene is a member of the S100 family of proteins containing 2 EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells, and involved in the regulation of a number of cellular processes such as cell cycle progression and differentiation. S100 genes include at least 13 members which are located as a cluster on chromosome 1q21. This protein may function in motility, invasion, and tubulin polymerization. Chromosomal rearrangements and altered expression of this gene have been implicated in tumor metastasis. Multiple alternatively spliced variants, encoding the same protein, have been identified.[2]

Interactions

S100A4 has been shown to interact with S100 calcium binding protein A1.[3][4]

Therapeutic targeting for cancer

S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. Research demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results 5C3 was developed, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.[5]

References

  1. Stoler A, Bouck N (March 1985). "Identification of a single chromosome in the normal human genome essential for suppression of hamster cell transformation". Proc. Natl. Acad. Sci. U.S.A. 82 (2): 570–4. doi:10.1073/pnas.82.2.570. PMC 397082. PMID 3155863.
  2. "Entrez Gene: S100A4 S100 calcium binding protein A4".
  3. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
  4. Wang G, Rudland PS, White MR, Barraclough R (April 2000). "Interaction in vivo and in vitro of the metastasis-inducing S100 protein, S100A4 (p9Ka) with S100A1". J. Biol. Chem. 275 (15): 11141–6. doi:10.1074/jbc.275.15.11141. PMID 10753920.
  5. Hernández JL, Padilla L, Dakhel S, Coll T, Hervas R, Adan J, Masa M, Mitjans F, Martinez JM, Coma S, Rodríguez L, Noé V, Ciudad CJ, Blasco F, Messeguer R (September 2013). "Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody". PLOS ONE. 8: e72480. doi:10.1371/journal.pone.0072480. PMC 3762817. PMID 24023743.

Further reading