YARS: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
(period)
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{ distinguish|RS-24 Yars}}
{{PBB_Controls
{{Underlinked|date=June 2016}}
| update_page = yes
{{Infobox_gene}}
| require_manual_inspection = no
'''Tyrosyl-tRNA synthetase, cytoplasmic''', also known as '''[[Tyrosine-tRNA ligase]]''', is an [[enzyme]] that in humans is encoded by the ''YARS'' [[gene]].<ref name="pmid8552597">{{cite journal | vauthors = Ribas de Pouplana L, Frugier M, Quinn CL, Schimmel P | title = Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria | journal = Proc Natl Acad Sci U S A | volume = 93 | issue = 1 | pages = 166–70 |date=Feb 1996 | pmid = 8552597 | pmc = 40199 | doi =10.1073/pnas.93.1.166 }}</ref><ref name="pmid9162081">{{cite journal | vauthors = Kleeman TA, Wei D, Simpson KL, First EA | title = Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine | journal = J Biol Chem | volume = 272 | issue = 22 | pages = 14420–5 |date=Jun 1997 | pmid = 9162081 | pmc =  | doi =10.1074/jbc.272.22.14420 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: YARS tyrosyl-tRNA synthetase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8565| accessdate = }}</ref>
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = PBB_Protein_YARS_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1n3l.
| PDB = {{PDB2|1n3l}}, {{PDB2|1ntg}}, {{PDB2|1q11}}
| Name = Tyrosyl-tRNA synthetase
| HGNCid = 12840
| Symbol = YARS
| AltSymbols =; CMTDIC; TYRRS; YRS; YTS
| OMIM = 603623
| ECnumber = 
| Homologene = 2730
| MGIid = 2147627
| GeneAtlas_image1 = PBB_GE_YARS_212048_s_at_tn.png
| Function = {{GNF_GO|id=GO:0000049 |text = tRNA binding}} {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0004831 |text = tyrosine-tRNA ligase activity}} {{GNF_GO|id=GO:0004871 |text = signal transducer activity}} {{GNF_GO|id=GO:0005153 |text = interleukin-8 receptor binding}} {{GNF_GO|id=GO:0005524 |text = ATP binding}} {{GNF_GO|id=GO:0016874 |text = ligase activity}}
  | Component = {{GNF_GO|id=GO:0005615 |text = extracellular space}} {{GNF_GO|id=GO:0005625 |text = soluble fraction}} {{GNF_GO|id=GO:0005737 |text = cytoplasm}}
| Process = {{GNF_GO|id=GO:0006437 |text = tyrosyl-tRNA aminoacylation}} {{GNF_GO|id=GO:0006915 |text = apoptosis}} {{GNF_GO|id=GO:0006928 |text = cell motility}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 8565
    | Hs_Ensembl = ENSG00000134684
    | Hs_RefseqProtein = NP_003671
    | Hs_RefseqmRNA = NM_003680
    | Hs_GenLoc_db =   
    | Hs_GenLoc_chr = 1
    | Hs_GenLoc_start = 33013427
    | Hs_GenLoc_end = 33056341
    | Hs_Uniprot = P54577
    | Mm_EntrezGene = 107271
    | Mm_Ensembl = ENSMUSG00000028811
    | Mm_RefseqmRNA = XM_622904
    | Mm_RefseqProtein = XP_622904
    | Mm_GenLoc_db =   
    | Mm_GenLoc_chr = 4
    | Mm_GenLoc_start = 128692255
    | Mm_GenLoc_end = 128721911
    | Mm_Uniprot = Q91WQ3
  }}
}}
'''Tyrosyl-tRNA synthetase''', also known as '''YARS''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: YARS tyrosyl-tRNA synthetase| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8565| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Tyrosyl-tRNA synthetase belongs to the class I tRNA synthetase family. Cytokine activities have also been observed for the human tyrosyl-tRNA synthetase, after it is split into two parts, an N-terminal fragment that harbors the catalytic site and a C-terminal fragment found only in the mammalian enzyme. The N-terminal fragment is an interleukin-8-like cytokine, whereas the released C-terminal fragment is an EMAP II-like cytokine.<ref name="entrez">{{cite web | title = Entrez Gene: YARS tyrosyl-tRNA synthetase| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=8565| accessdate = }}</ref>
| summary_text = [[Aminoacyl-tRNA synthetase]]s catalyze the aminoacylation of [[transfer RNA]] (tRNA) by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Tyrosyl-tRNA synthetase belongs to the class I tRNA synthetase family. Cytokine activities have also been observed for the human tyrosyl-tRNA synthetase, after it is split into two parts, an N-terminal fragment that harbors the catalytic site and a C-terminal fragment found only in the mammalian enzyme. The N-terminal fragment is an interleukin-8-like cytokine, whereas the released C-terminal fragment is an EMAP II-like cytokine.<ref name="entrez"/>
}}
}} Recently, tyrosyl-tRNA synthetase has been demonstrated as the biologically and functionally significant target for resveratrol.<ref>http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14028.html</ref>
 
For a comparison of cytoplasmic human tyrosyl-tRNA synthetase with its mitochondrial counterpart and with tyrosyl-tRNA synthetases of other biological kingdoms and organisms, see the Wikipedia page on [[Tyrosine-tRNA ligase]] and a general review on their structures and functions.<ref>{{cite web|last1=Bedouelle|first1=Hugues|title=Tyrosyl-tRNA Synthetases|url=https://www.ncbi.nlm.nih.gov/books/NBK6553/|website=In: Madame Curie Bioscience Database [NCBI NBK6553]|publisher=Austin (TX): Landes Bioscience}}</ref>


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Ewalt KL, Schimmel P |title=Activation of angiogenic signaling pathways by two human tRNA synthetases. |journal=Biochemistry |volume=41 |issue= 45 |pages= 13344-9 |year= 2002 |pmid= 12416978 |doi=  }}
*{{cite journal  | vauthors=Ewalt KL, Schimmel P |title=Activation of angiogenic signaling pathways by two human tRNA synthetases. |journal=Biochemistry |volume=41 |issue= 45 |pages= 13344–9 |year= 2002 |pmid= 12416978 |doi=10.1021/bi020537k }}
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi= }}
*{{cite journal  | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
*{{cite journal  | author=Ribas de Pouplana L, Frugier M, Quinn CL, Schimmel P |title=Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 1 |pages= 166-70 |year= 1996 |pmid= 8552597 |doi=  }}
*{{cite journal   |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
*{{cite journal  | author=Kleeman TA, Wei D, Simpson KL, First EA |title=Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine. |journal=J. Biol. Chem. |volume=272 |issue= 22 |pages= 14420-5 |year= 1997 |pmid= 9162081 |doi= }}
*{{cite journal  | vauthors=Wakasugi K, Quinn CL, Tao N, Schimmel P |title=Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant |journal=EMBO J. |volume=17 |issue= 1 |pages= 297–305 |year= 1998 |pmid= 9427763 |doi= 10.1093/emboj/17.1.297 | pmc=1170380 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal  | vauthors=Wakasugi K, Schimmel P |title=Two distinct cytokines released from a human aminoacyl-tRNA synthetase |journal=Science |volume=284 |issue= 5411 |pages= 147–51 |year= 1999 |pmid= 10102815 |doi=10.1126/science.284.5411.147 }}
*{{cite journal  | author=Wakasugi K, Quinn CL, Tao N, Schimmel P |title=Genetic code in evolution: switching species-specific aminoacylation with a peptide transplant. |journal=EMBO J. |volume=17 |issue= 1 |pages= 297-305 |year= 1998 |pmid= 9427763 |doi= 10.1093/emboj/17.1.297 }}
*{{cite journal  | vauthors=Wakasugi K, Schimmel P |title=Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase |journal=J. Biol. Chem. |volume=274 |issue= 33 |pages= 23155–9 |year= 1999 |pmid= 10438485 |doi=10.1074/jbc.274.33.23155 }}
*{{cite journal  | author=Wakasugi K, Schimmel P |title=Two distinct cytokines released from a human aminoacyl-tRNA synthetase. |journal=Science |volume=284 |issue= 5411 |pages= 147-51 |year= 1999 |pmid= 10102815 |doi=  }}
*{{cite journal  | vauthors=Austin J, First EA |title=Catalysis of tyrosyl-adenylate formation by the human tyrosyl-tRNA synthetase |journal=J. Biol. Chem. |volume=277 |issue= 17 |pages= 14812–20 |year= 2002 |pmid= 11856731 |doi= 10.1074/jbc.M103396200 }}
*{{cite journal  | author=Wakasugi K, Schimmel P |title=Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. |journal=J. Biol. Chem. |volume=274 |issue= 33 |pages= 23155-9 |year= 1999 |pmid= 10438485 |doi=  }}
*{{cite journal  | vauthors=Austin J, First EA |title=Potassium functionally replaces the second lysine of the KMSKS signature sequence in human tyrosyl-tRNA synthetase |journal=J. Biol. Chem. |volume=277 |issue= 23 |pages= 20243–8 |year= 2002 |pmid= 11927599 |doi= 10.1074/jbc.M201923200 }}
*{{cite journal  | author=Austin J, First EA |title=Catalysis of tyrosyl-adenylate formation by the human tyrosyl-tRNA synthetase. |journal=J. Biol. Chem. |volume=277 |issue= 17 |pages= 14812-20 |year= 2002 |pmid= 11856731 |doi= 10.1074/jbc.M103396200 }}
*{{cite journal   |vauthors=Wakasugi K, Slike BM, Hood J, etal |title=Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase |journal=J. Biol. Chem. |volume=277 |issue= 23 |pages= 20124–6 |year= 2002 |pmid= 11956181 |doi= 10.1074/jbc.C200126200 }}
*{{cite journal  | author=Austin J, First EA |title=Potassium functionally replaces the second lysine of the KMSKS signature sequence in human tyrosyl-tRNA synthetase. |journal=J. Biol. Chem. |volume=277 |issue= 23 |pages= 20243-8 |year= 2002 |pmid= 11927599 |doi= 10.1074/jbc.M201923200 }}
*{{cite journal  | vauthors=Austin J, First EA |title=Comparison of the catalytic roles played by the KMSKS motif in the human and Bacillus stearothermophilus trosyl-tRNA synthetases |journal=J. Biol. Chem. |volume=277 |issue= 32 |pages= 28394–9 |year= 2002 |pmid= 12016229 |doi= 10.1074/jbc.M204404200 }}
*{{cite journal | author=Wakasugi K, Slike BM, Hood J, ''et al.'' |title=Induction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. |journal=J. Biol. Chem. |volume=277 |issue= 23 |pages= 20124-6 |year= 2002 |pmid= 11956181 |doi= 10.1074/jbc.C200126200 }}
*{{cite journal  | vauthors=Yang XL, Skene RJ, McRee DE, Schimmel P |title=Crystal structure of a human aminoacyl-tRNA synthetase cytokine |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 24 |pages= 15369–74 |year= 2003 |pmid= 12427973 |doi= 10.1073/pnas.242611799 | pmc=137723 }}
*{{cite journal  | author=Austin J, First EA |title=Comparison of the catalytic roles played by the KMSKS motif in the human and Bacillus stearothermophilus trosyl-tRNA synthetases. |journal=J. Biol. Chem. |volume=277 |issue= 32 |pages= 28394-9 |year= 2002 |pmid= 12016229 |doi= 10.1074/jbc.M204404200 }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal  | author=Yang XL, Skene RJ, McRee DE, Schimmel P |title=Crystal structure of a human aminoacyl-tRNA synthetase cytokine. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 24 |pages= 15369-74 |year= 2003 |pmid= 12427973 |doi= 10.1073/pnas.242611799 }}
*{{cite journal  | vauthors=Jia J, Li B, Jin Y, Wang D |title=Expression, purification, and characterization of human tyrosyl-tRNA synthetase |journal=Protein Expr. Purif. |volume=27 |issue= 1 |pages= 104–8 |year= 2003 |pmid= 12509991 |doi=10.1016/S1046-5928(02)00576-4 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Gevaert K, Goethals M, Martens L, etal |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566–9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 }}
*{{cite journal  | author=Jia J, Li B, Jin Y, Wang D |title=Expression, purification, and characterization of human tyrosyl-tRNA synthetase. |journal=Protein Expr. Purif. |volume=27 |issue= 1 |pages= 104-8 |year= 2003 |pmid= 12509991 |doi=  }}
*{{cite journal   |vauthors=Jordanova A, Thomas FP, Guergueltcheva V, etal |title=Dominant intermediate Charcot-Marie-Tooth type C maps to chromosome 1p34-p35 |journal=Am. J. Hum. Genet. |volume=73 |issue= 6 |pages= 1423–30 |year= 2004 |pmid= 14606043 |doi=10.1086/379792  | pmc=1180404 }}
*{{cite journal | author=Gevaert K, Goethals M, Martens L, ''et al.'' |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566-9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 }}
*{{cite journal   |vauthors=Yang XL, Otero FJ, Skene RJ, etal |title=Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue= 26 |pages= 15376–80 |year= 2004 |pmid= 14671330 |doi= 10.1073/pnas.2136794100 | pmc=307575 }}
*{{cite journal | author=Jordanova A, Thomas FP, Guergueltcheva V, ''et al.'' |title=Dominant intermediate Charcot-Marie-Tooth type C maps to chromosome 1p34-p35. |journal=Am. J. Hum. Genet. |volume=73 |issue= 6 |pages= 1423-30 |year= 2004 |pmid= 14606043 |doi=  }}
*{{cite journal   |vauthors=Ota T, Suzuki Y, Nishikawa T, etal |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal | author=Yang XL, Otero FJ, Skene RJ, ''et al.'' |title=Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=100 |issue= 26 |pages= 15376-80 |year= 2004 |pmid= 14671330 |doi= 10.1073/pnas.2136794100 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
}}
}}
{{refend}}
{{refend}}
{{PDB Gallery|geneid=8565}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


{{protein-stub}}
{{gene-1-stub}}
{{WikiDoc Sources}}

Revision as of 15:06, 6 December 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Tyrosyl-tRNA synthetase, cytoplasmic, also known as Tyrosine-tRNA ligase, is an enzyme that in humans is encoded by the YARS gene.[1][2][3]

Aminoacyl-tRNA synthetases catalyze the aminoacylation of transfer RNA (tRNA) by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Tyrosyl-tRNA synthetase belongs to the class I tRNA synthetase family. Cytokine activities have also been observed for the human tyrosyl-tRNA synthetase, after it is split into two parts, an N-terminal fragment that harbors the catalytic site and a C-terminal fragment found only in the mammalian enzyme. The N-terminal fragment is an interleukin-8-like cytokine, whereas the released C-terminal fragment is an EMAP II-like cytokine.[3] Recently, tyrosyl-tRNA synthetase has been demonstrated as the biologically and functionally significant target for resveratrol.[4]

For a comparison of cytoplasmic human tyrosyl-tRNA synthetase with its mitochondrial counterpart and with tyrosyl-tRNA synthetases of other biological kingdoms and organisms, see the Wikipedia page on Tyrosine-tRNA ligase and a general review on their structures and functions.[5]

References

  1. Ribas de Pouplana L, Frugier M, Quinn CL, Schimmel P (Feb 1996). "Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria". Proc Natl Acad Sci U S A. 93 (1): 166–70. doi:10.1073/pnas.93.1.166. PMC 40199. PMID 8552597.
  2. Kleeman TA, Wei D, Simpson KL, First EA (Jun 1997). "Human tyrosyl-tRNA synthetase shares amino acid sequence homology with a putative cytokine". J Biol Chem. 272 (22): 14420–5. doi:10.1074/jbc.272.22.14420. PMID 9162081.
  3. 3.0 3.1 "Entrez Gene: YARS tyrosyl-tRNA synthetase".
  4. http://www.nature.com/nature/journal/vaop/ncurrent/full/nature14028.html
  5. Bedouelle, Hugues. "Tyrosyl-tRNA Synthetases". In: Madame Curie Bioscience Database [NCBI NBK6553]. Austin (TX): Landes Bioscience.

Further reading