EPRS: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Bifunctional aminoacyl-tRNA synthetase''' is an [[enzyme]] that in humans is encoded by the ''EPRS'' [[gene]].<ref name="pmid1988429">{{cite journal | vauthors = Fett R, Knippers R | title = The primary structure of human glutaminyl-tRNA synthetase. A highly conserved core, amino acid repeat regions, and homologies with translation elongation factors | journal = J Biol Chem | volume = 266 | issue = 3 | pages = 1448–55 |date=February 1991 | pmid = 1988429 | pmc = | doi = }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: EPRS glutamyl-prolyl-tRNA synthetase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=2058| accessdate = }}</ref> | ||
| | |||
| | == Gene == | ||
| | |||
| | Alternative splicing has been observed for this gene, but the full-length nature and biological validity of the variant have not been determined.<ref name="entrez"/> | ||
| | |||
}} | == Function == | ||
Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. The protein encoded by this gene is a multifunctional aminoacyl-tRNA synthetase that catalyzes the aminoacylation of glutamic acid and proline tRNA species.<ref name="entrez"/> | |||
Phosphorylation of EPRS is reported to be essential for the formation of GAIT (Gamma-interferon Activated Inhibitor of Translation) complex that regulates the translation of multiple genes in [[monocyte]]s and [[macrophage]]s.<ref name="pmid19647514">{{cite journal | vauthors = Arif A, Jia J, Mukhopadhyay R, Willard B, Kinter M, Fox PL | title = Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity | journal = Mol. Cell | volume = 35 | issue = 2 | pages = 164–80 |date=July 2009 | pmid = 19647514 | doi = 10.1016/j.molcel.2009.05.028 | url = | issn = | pmc = 2752289 }}</ref> | |||
== Interactions == | |||
< | EPRS has been shown to [[Protein-protein interaction|interact]] with [[POU2F1]],<ref name=pmid9537509>{{cite journal |last=Nie |first=J |author2=Sakamoto S |author3=Song D |author4=Qu Z |author5=Ota K |author6=Taniguchi T |date=March 1998 |title=Interaction of Oct–1 and automodification domain of poly(ADP-ribose) synthetase |journal=FEBS Lett. |volume=424 |issue=1–2 |pages=27–32 | pmid = 9537509 |doi=10.1016/S0014-5793(98)00131-8 }}</ref> [[Heat shock protein 90kDa alpha (cytosolic), member A1]]<ref name=pmid10913161>{{cite journal |last=Kang |first=J |author2=Kim T |author3=Ko Y G |author4=Rho S B |author5=Park S G |author6=Kim M J |author7=Kwon H J |author8=Kim S |date=October 2000 |title=Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases |journal=J. Biol. Chem. |volume=275 |issue=41 |pages=31682–8 |publisher= |location = UNITED STATES| issn = 0021-9258| pmid = 10913161 |doi = 10.1074/jbc.M909965199 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}</ref> and [[IARS]].<ref name=pmid9556618>{{cite journal |last=Rho |first=S B |author2=Lee J S |author3=Jeong E J |author4=Kim K S |author5=Kim Y G |author6=Kim S |date=May 1998 |title=A multifunctional repeated motif is present in human bifunctional tRNA synthetase |journal=J. Biol. Chem. |volume=273 |issue=18 |pages=11267–73 |publisher= |location = UNITED STATES| issn = 0021-9258| pmid = 9556618 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = |doi=10.1074/jbc.273.18.11267 }}</ref> | ||
{{ | |||
| | |||
| | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Kaiser E, Eberhard D, Knippers R |title=Exons encoding the highly conserved part of human glutaminyl-tRNA synthetase |journal=J. Mol. Evol. |volume=34 |issue= 1 |pages= 45–53 |year= 1992 |pmid= 1556743 |doi=10.1007/BF00163851 }} | ||
*{{cite journal | author=Norcum MT |title=Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents | *{{cite journal | author=Norcum MT |title=Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents |journal=J. Biol. Chem. |volume=266 |issue= 23 |pages= 15398–405 |year= 1991 |pmid= 1651330 |doi= }} | ||
*{{cite journal | | *{{cite journal | vauthors=Cerini C, Kerjan P, Astier M |title=A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase |journal=EMBO J. |volume=10 |issue= 13 |pages= 4267–77 |year= 1992 |pmid= 1756734 |doi= | pmc=453179 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Kunze N, Bittler E, Fett R |title=The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32-42 |journal=Hum. Genet. |volume=85 |issue= 5 |pages= 527–30 |year= 1990 |pmid= 2227938 |doi=10.1007/BF00194231 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Thömmes P, Fett R, Schray B |title=The core region of human glutaminyl-tRNA synthetase homologies with the Escherichia coli and yeast enzymes |journal=Nucleic Acids Res. |volume=16 |issue= 12 |pages= 5391–406 |year= 1988 |pmid= 3290852 |doi=10.1093/nar/16.12.5391 | pmc=336774 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Kaiser E, Hu B, Becher S |title=The human EPRS locus (formerly the QARS locus): a gene encoding a class I and a class II aminoacyl-tRNA synthetase |journal=Genomics |volume=19 |issue= 2 |pages= 280–90 |year= 1994 |pmid= 8188258 |doi= 10.1006/geno.1994.1059 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Hillier LD, Lennon G, Becker M |title=Generation and analysis of 280,000 human expressed sequence tags |journal=Genome Res. |volume=6 |issue= 9 |pages= 807–28 |year= 1997 |pmid= 8889549 |doi=10.1101/gr.6.9.807 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Rho SB, Lee JS, Jeong EJ |title=A multifunctional repeated motif is present in human bifunctional tRNA synthetase |journal=J. Biol. Chem. |volume=273 |issue= 18 |pages= 11267–73 |year= 1998 |pmid= 9556618 |doi=10.1074/jbc.273.18.11267 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Quevillon S, Robinson JC, Berthonneau E |title=Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein |journal=J. Mol. Biol. |volume=285 |issue= 1 |pages= 183–95 |year= 1999 |pmid= 9878398 |doi= 10.1006/jmbi.1998.2316 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Kang J, Kim T, Ko YG |title=Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases |journal=J. Biol. Chem. |volume=275 |issue= 41 |pages= 31682–8 |year= 2000 |pmid= 10913161 |doi= 10.1074/jbc.M909965199 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Jeong EJ, Hwang GS, Kim KH |title=Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats |journal=Biochemistry |volume=39 |issue= 51 |pages= 15775–82 |year= 2001 |pmid= 11123902 |doi=10.1021/bi001393h |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Sang Lee J, Gyu Park S, Park H |title=Interaction network of human aminoacyl-tRNA synthetases and subunits of elongation factor 1 complex |journal=Biochem. Biophys. Res. Commun. |volume=291 |issue= 1 |pages= 158–64 |year= 2002 |pmid= 11829477 |doi= 10.1006/bbrc.2002.6398 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Bouwmeester T, Bauch A, Ruffner H |title=A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway |journal=Nat. Cell Biol. |volume=6 |issue= 2 |pages= 97–105 |year= 2004 |pmid= 14743216 |doi= 10.1038/ncb1086 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Beausoleil SA, Jedrychowski M, Schwartz D |title=Large-scale characterization of HeLa cell nuclear phosphoproteins |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Sampath P, Mazumder B, Seshadri V |title=Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation |journal=Cell |volume=119 |issue= 2 |pages= 195–208 |year= 2004 |pmid= 15479637 |doi= 10.1016/j.cell.2004.09.030 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Kato T, Daigo Y, Hayama S |title=A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis |journal=Cancer Res. |volume=65 |issue= 13 |pages= 5638–46 |year= 2005 |pmid= 15994936 |doi= 10.1158/0008-5472.CAN-05-0600 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Beausoleil SA, Villén J, Gerber SA |title=A probability-based approach for high-throughput protein phosphorylation analysis and site localization |journal=Nat. Biotechnol. |volume=24 |issue= 10 |pages= 1285–92 |year= 2006 |pmid= 16964243 |doi= 10.1038/nbt1240 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal | vauthors=Ewing RM, Chu P, Elisma F |title=Large-scale mapping of human protein-protein interactions by mass spectrometry |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 |display-authors=etal}} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=2058}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = no | |||
| update_citations = yes | |||
}} | |||
{{ | {{gene-1-stub}} | ||
Revision as of 00:33, 31 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Bifunctional aminoacyl-tRNA synthetase is an enzyme that in humans is encoded by the EPRS gene.[1][2]
Gene
Alternative splicing has been observed for this gene, but the full-length nature and biological validity of the variant have not been determined.[2]
Function
Aminoacyl-tRNA synthetases are a class of enzymes that charge tRNAs with their cognate amino acids. The protein encoded by this gene is a multifunctional aminoacyl-tRNA synthetase that catalyzes the aminoacylation of glutamic acid and proline tRNA species.[2]
Phosphorylation of EPRS is reported to be essential for the formation of GAIT (Gamma-interferon Activated Inhibitor of Translation) complex that regulates the translation of multiple genes in monocytes and macrophages.[3]
Interactions
EPRS has been shown to interact with POU2F1,[4] Heat shock protein 90kDa alpha (cytosolic), member A1[5] and IARS.[6]
References
- ↑ Fett R, Knippers R (February 1991). "The primary structure of human glutaminyl-tRNA synthetase. A highly conserved core, amino acid repeat regions, and homologies with translation elongation factors". J Biol Chem. 266 (3): 1448–55. PMID 1988429.
- ↑ 2.0 2.1 2.2 "Entrez Gene: EPRS glutamyl-prolyl-tRNA synthetase".
- ↑ Arif A, Jia J, Mukhopadhyay R, Willard B, Kinter M, Fox PL (July 2009). "Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity". Mol. Cell. 35 (2): 164–80. doi:10.1016/j.molcel.2009.05.028. PMC 2752289. PMID 19647514.
- ↑ Nie, J; Sakamoto S; Song D; Qu Z; Ota K; Taniguchi T (March 1998). "Interaction of Oct–1 and automodification domain of poly(ADP-ribose) synthetase". FEBS Lett. 424 (1–2): 27–32. doi:10.1016/S0014-5793(98)00131-8. PMID 9537509.
- ↑ Kang, J; Kim T; Ko Y G; Rho S B; Park S G; Kim M J; Kwon H J; Kim S (October 2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases". J. Biol. Chem. UNITED STATES. 275 (41): 31682–8. doi:10.1074/jbc.M909965199. ISSN 0021-9258. PMID 10913161.
- ↑ Rho, S B; Lee J S; Jeong E J; Kim K S; Kim Y G; Kim S (May 1998). "A multifunctional repeated motif is present in human bifunctional tRNA synthetase". J. Biol. Chem. UNITED STATES. 273 (18): 11267–73. doi:10.1074/jbc.273.18.11267. ISSN 0021-9258. PMID 9556618.
Further reading
- Kaiser E, Eberhard D, Knippers R (1992). "Exons encoding the highly conserved part of human glutaminyl-tRNA synthetase". J. Mol. Evol. 34 (1): 45–53. doi:10.1007/BF00163851. PMID 1556743.
- Norcum MT (1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents". J. Biol. Chem. 266 (23): 15398–405. PMID 1651330.
- Cerini C, Kerjan P, Astier M, et al. (1992). "A component of the multisynthetase complex is a multifunctional aminoacyl-tRNA synthetase". EMBO J. 10 (13): 4267–77. PMC 453179. PMID 1756734.
- Kunze N, Bittler E, Fett R, et al. (1990). "The human QARS locus: assignment of the human gene for glutaminyl-tRNA synthetase to chromosome 1q32-42". Hum. Genet. 85 (5): 527–30. doi:10.1007/BF00194231. PMID 2227938.
- Thömmes P, Fett R, Schray B, et al. (1988). "The core region of human glutaminyl-tRNA synthetase homologies with the Escherichia coli and yeast enzymes". Nucleic Acids Res. 16 (12): 5391–406. doi:10.1093/nar/16.12.5391. PMC 336774. PMID 3290852.
- Kaiser E, Hu B, Becher S, et al. (1994). "The human EPRS locus (formerly the QARS locus): a gene encoding a class I and a class II aminoacyl-tRNA synthetase". Genomics. 19 (2): 280–90. doi:10.1006/geno.1994.1059. PMID 8188258.
- Hillier LD, Lennon G, Becker M, et al. (1997). "Generation and analysis of 280,000 human expressed sequence tags". Genome Res. 6 (9): 807–28. doi:10.1101/gr.6.9.807. PMID 8889549.
- Rho SB, Lee JS, Jeong EJ, et al. (1998). "A multifunctional repeated motif is present in human bifunctional tRNA synthetase". J. Biol. Chem. 273 (18): 11267–73. doi:10.1074/jbc.273.18.11267. PMID 9556618.
- Quevillon S, Robinson JC, Berthonneau E, et al. (1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein". J. Mol. Biol. 285 (1): 183–95. doi:10.1006/jmbi.1998.2316. PMID 9878398.
- Kang J, Kim T, Ko YG, et al. (2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases". J. Biol. Chem. 275 (41): 31682–8. doi:10.1074/jbc.M909965199. PMID 10913161.
- Jeong EJ, Hwang GS, Kim KH, et al. (2001). "Structural analysis of multifunctional peptide motifs in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats". Biochemistry. 39 (51): 15775–82. doi:10.1021/bi001393h. PMID 11123902.
- Sang Lee J, Gyu Park S, Park H, et al. (2002). "Interaction network of human aminoacyl-tRNA synthetases and subunits of elongation factor 1 complex". Biochem. Biophys. Res. Commun. 291 (1): 158–64. doi:10.1006/bbrc.2002.6398. PMID 11829477.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID 14743216.
- Beausoleil SA, Jedrychowski M, Schwartz D, et al. (2004). "Large-scale characterization of HeLa cell nuclear phosphoproteins". Proc. Natl. Acad. Sci. U.S.A. 101 (33): 12130–5. doi:10.1073/pnas.0404720101. PMC 514446. PMID 15302935.
- Sampath P, Mazumder B, Seshadri V, et al. (2004). "Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation". Cell. 119 (2): 195–208. doi:10.1016/j.cell.2004.09.030. PMID 15479637.
- Kato T, Daigo Y, Hayama S, et al. (2005). "A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis". Cancer Res. 65 (13): 5638–46. doi:10.1158/0008-5472.CAN-05-0600. PMID 15994936.
- Beausoleil SA, Villén J, Gerber SA, et al. (2006). "A probability-based approach for high-throughput protein phosphorylation analysis and site localization". Nat. Biotechnol. 24 (10): 1285–92. doi:10.1038/nbt1240. PMID 16964243.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
This article on a gene on human chromosome 1 is a stub. You can help Wikipedia by expanding it. |