SFRS7: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Serine/arginine-rich splicing factor 7''' (SRSF7) also known as '''splicing factor, arginine/serine-rich 7''' (SFRS7) '''or splicing factor 9G8''' is a [[protein]] that in humans is encoded by the ''SRSF7'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SFRS7 splicing factor, arginine/serine-rich 7, 35kDa| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6432| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image = PBB_Protein_SFRS7_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 2hvz.
| PDB = {{PDB2|2hvz}}
| Name = Splicing factor, arginine/serine-rich 7, 35kDa
| HGNCid = 10789
| Symbol = SFRS7
| AltSymbols =; 9G8; AAG3; HSSG1; RBM37; ZCCHC20; ZCRB2
| OMIM = 600572
| ECnumber = 
| Homologene = 4571
| MGIid = 1926232
| GeneAtlas_image1 = PBB_GE_SFRS7_201129_at_tn.png
| GeneAtlas_image2 = PBB_GE_SFRS7_213649_at_tn.png
| GeneAtlas_image3 = PBB_GE_SFRS7_214141_x_at_tn.png
| Function = {{GNF_GO|id=GO:0000166 |text = nucleotide binding}} {{GNF_GO|id=GO:0003723 |text = RNA binding}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}
| Process = {{GNF_GO|id=GO:0006397 |text = mRNA processing}} {{GNF_GO|id=GO:0008380 |text = RNA splicing}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 6432
    | Hs_Ensembl = ENSG00000115875
    | Hs_RefseqProtein = NP_001026854
    | Hs_RefseqmRNA = NM_001031684
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 2
    | Hs_GenLoc_start = 38824245
    | Hs_GenLoc_end = 38832045
    | Hs_Uniprot = Q16629
    | Mm_EntrezGene = 225027
    | Mm_Ensembl = ENSMUSG00000024097
    | Mm_RefseqmRNA = NM_146083
    | Mm_RefseqProtein = NP_666195
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 17
    | Mm_GenLoc_start = 80108406
    | Mm_GenLoc_end = 80115615
    | Mm_Uniprot = Q8BL97
  }}
}}
'''Splicing factor, arginine/serine-rich 7, 35kDa''', also known as '''SFRS7''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SFRS7 splicing factor, arginine/serine-rich 7, 35kDa| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6432| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
The protein encoded by this gene is a member of the serine/arginine (SR)-rich family of pre-[[mRNA]] splicing factors, which constitute part of the [[spliceosome]]. Each of these factors contains an [[RNA recognition motif]] (RRM) for binding RNA and an RS domain for binding other proteins. The RS domain is rich in [[serine]] and [[arginine]] residues and facilitates interaction between different SR splicing factors. In addition to being critical for mRNA splicing, the SR proteins have also been shown to be involved in mRNA export from the nucleus and in translation.<ref name="entrez"/>
{{PBB_Summary
| section_title =
| summary_text =
}}


==References==
== Model organisms ==
{{reflist|2}}
 
==Further reading==
[[Model organism]]s have been used in the study of SRSF7 function. A conditional [[knockout mouse]] line called ''Srsf7<sup>tm1a(EUCOMM)Wtsi</sup>'' was generated at the [[Wellcome Trust Sanger Institute]].<ref name="mgp_reference">{{cite journal |title=The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice |author=Gerdin AK |year=2010 |journal=Acta Ophthalmologica|volume=88 |pages=925–7|doi=10.1111/j.1755-3768.2010.4142.x }}</ref> Male and female animals underwent a standardized [[phenotypic screen]]<ref name="IMPCsearch_ref">{{cite web |url=http://www.mousephenotype.org/data/search?q=Srsf7#fq=*:*&facet=gene |title=International Mouse Phenotyping Consortium}}</ref> to determine the effects of deletion.<ref name="pmid21677750">{{cite journal | vauthors = Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A | title = A conditional knockout resource for the genome-wide study of mouse gene function | journal = Nature | volume = 474 | issue = 7351 | pages = 337–42 | date = Jun 2011 | pmid = 21677750 | pmc = 3572410 | doi = 10.1038/nature10163 }}</ref><ref name="mouse_library">{{cite journal | vauthors = Dolgin E | title = Mouse library set to be knockout | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | date = Jun 2011 | pmid = 21677718 | doi = 10.1038/474262a }}</ref><ref name="mouse_for_all_reasons">{{cite journal | vauthors = Collins FS, Rossant J, Wurst W | title = A mouse for all reasons | journal = Cell | volume = 128 | issue = 1 | pages = 9–13 | date = Jan 2007 | pmid = 17218247 | doi = 10.1016/j.cell.2006.12.018 }}</ref><ref name="pmid23870131">{{cite journal | vauthors = White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP | title = Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes | journal = Cell | volume = 154 | issue = 2 | pages = 452–64 | date = Jul 2013 | pmid = 23870131 | doi = 10.1016/j.cell.2013.06.022 | pmc=3717207}}</ref> Additional screens performed:  - In-depth immunological phenotyping<ref name="iii_ref">{{cite web |url= http://www.immunophenotyping.org/data/search?keys=Srsf7&field_gene_construct_tid=All |title=Infection and Immunity Immunophenotyping (3i) Consortium}}</ref>
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: left;" |
|+ ''Srsf7'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
|-
| colspan=2; style="text-align: center;" | All data available at.<ref name="IMPCsearch_ref"/><ref name="iii_ref" />
|-
| Insulin || bgcolor="#488ED3"|Normal
 
|-
| Homozygous viability at P14 || bgcolor="#C40000"|Abnormal
 
|-
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
 
|-
| Body weight || bgcolor="#488ED3"|Normal
 
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
 
|-
| Grip strength || bgcolor="#488ED3"|Normal
 
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
 
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
 
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
 
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
 
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
 
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
 
|-
| Eye morphology || bgcolor="#488ED3"|Normal
 
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
 
|-
| ''[[Haematology]]'' 16 Weeks || bgcolor="#488ED3"|Normal
 
|-
| Peripheral blood leukocytes 16 Weeks || bgcolor="#488ED3"|Normal
 
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal
 
|-
| Epidermal Immune Composition || bgcolor="#488ED3"|Normal
 
|-
|}
{{clear|left}}
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Popielarz M, Cavaloc Y, Mattei MG, Gattoni R, Stévenin J | title = The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts | journal = The Journal of Biological Chemistry | volume = 270 | issue = 30 | pages = 17830–5 | date = Jul 1995 | pmid = 7629084 | doi = 10.1074/jbc.270.30.17830 }}
| citations =
* {{cite journal | vauthors = Cavaloc Y, Popielarz M, Fuchs JP, Gattoni R, Stévenin J | title = Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family | journal = The EMBO Journal | volume = 13 | issue = 11 | pages = 2639–49 | date = Jun 1994 | pmid = 8013463 | pmc = 395138 | doi =  }}
*{{cite journal | author=Popielarz M, Cavaloc Y, Mattei MG, ''et al.'' |title=The gene encoding human splicing factor 9G8. Structure, chromosomal localization, and expression of alternatively processed transcripts. |journal=J. Biol. Chem. |volume=270 |issue= 30 |pages= 17830-5 |year= 1995 |pmid= 7629084 |doi= }}
* {{cite journal | vauthors = Yuan Y, Li DM, Sun H | title = PIR1, a novel phosphatase that exhibits high affinity to RNA . ribonucleoprotein complexes | journal = The Journal of Biological Chemistry | volume = 273 | issue = 32 | pages = 20347–53 | date = Aug 1998 | pmid = 9685386 | doi = 10.1074/jbc.273.32.20347 }}
*{{cite journal | author=Cavaloc Y, Popielarz M, Fuchs JP, ''et al.'' |title=Characterization and cloning of the human splicing factor 9G8: a novel 35 kDa factor of the serine/arginine protein family. |journal=EMBO J. |volume=13 |issue= 11 |pages= 2639-49 |year= 1994 |pmid= 8013463 |doi= }}
* {{cite journal | vauthors = Lejeune F, Cavaloc Y, Stevenin J | title = Alternative splicing of intron 3 of the serine/arginine-rich protein 9G8 gene. Identification of flanking exonic splicing enhancers and involvement of 9G8 as a trans-acting factor | journal = The Journal of Biological Chemistry | volume = 276 | issue = 11 | pages = 7850–8 | date = Mar 2001 | pmid = 11096110 | doi = 10.1074/jbc.M009510200 }}
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
* {{cite journal | vauthors = Nogues G, Kadener S, Cramer P, Bentley D, Kornblihtt AR | title = Transcriptional activators differ in their abilities to control alternative splicing | journal = The Journal of Biological Chemistry | volume = 277 | issue = 45 | pages = 43110–4 | date = Nov 2002 | pmid = 12221105 | doi = 10.1074/jbc.M208418200 }}
*{{cite journal | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
* {{cite journal | vauthors = Hu D, Mayeda A, Trembley JH, Lahti JM, Kidd VJ | title = CDK11 complexes promote pre-mRNA splicing | journal = The Journal of Biological Chemistry | volume = 278 | issue = 10 | pages = 8623–9 | date = Mar 2003 | pmid = 12501247 | doi = 10.1074/jbc.M210057200 }}
*{{cite journal  | author=Yuan Y, Li DM, Sun H |title=PIR1, a novel phosphatase that exhibits high affinity to RNA . ribonucleoprotein complexes. |journal=J. Biol. Chem. |volume=273 |issue= 32 |pages= 20347-53 |year= 1998 |pmid= 9685386 |doi= }}
* {{cite journal | vauthors = Li J, Hawkins IC, Harvey CD, Jennings JL, Link AJ, Patton JG | title = Regulation of alternative splicing by SRrp86 and its interacting proteins | journal = Molecular and Cellular Biology | volume = 23 | issue = 21 | pages = 7437–47 | date = Nov 2003 | pmid = 14559993 | pmc = 207616 | doi = 10.1128/MCB.23.21.7437-7447.2003 }}
*{{cite journal | author=Lejeune F, Cavaloc Y, Stevenin J |title=Alternative splicing of intron 3 of the serine/arginine-rich protein 9G8 gene. Identification of flanking exonic splicing enhancers and involvement of 9G8 as a trans-acting factor. |journal=J. Biol. Chem. |volume=276 |issue= 11 |pages= 7850-8 |year= 2001 |pmid= 11096110 |doi= 10.1074/jbc.M009510200 }}
* {{cite journal | vauthors = Yang L, Li N, Wang C, Yu Y, Yuan L, Zhang M, Cao X | title = Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells | journal = The Journal of Biological Chemistry | volume = 279 | issue = 12 | pages = 11639–48 | date = Mar 2004 | pmid = 14684736 | doi = 10.1074/jbc.M312895200 }}
*{{cite journal | author=Nogues G, Kadener S, Cramer P, ''et al.'' |title=Transcriptional activators differ in their abilities to control alternative splicing. |journal=J. Biol. Chem. |volume=277 |issue= 45 |pages= 43110-4 |year= 2003 |pmid= 12221105 |doi= 10.1074/jbc.M208418200 }}
* {{cite journal | vauthors = Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L, Branlant C, Stévenin J | title = Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA | journal = The Journal of Biological Chemistry | volume = 279 | issue = 29 | pages = 29963–73 | date = Jul 2004 | pmid = 15123677 | doi = 10.1074/jbc.M404452200 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
* {{cite journal | vauthors = Will CL, Schneider C, Hossbach M, Urlaub H, Rauhut R, Elbashir S, Tuschl T, Lührmann R | title = The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome | journal = RNA | volume = 10 | issue = 6 | pages = 929–41 | date = Jun 2004 | pmid = 15146077 | pmc = 1370585 | doi = 10.1261/rna.7320604 }}
*{{cite journal  | author=Hu D, Mayeda A, Trembley JH, ''et al.'' |title=CDK11 complexes promote pre-mRNA splicing. |journal=J. Biol. Chem. |volume=278 |issue= 10 |pages= 8623-9 |year= 2003 |pmid= 12501247 |doi= 10.1074/jbc.M210057200 }}
* {{cite journal | vauthors = Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM | title = Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization | journal = The Journal of Biological Chemistry | volume = 279 | issue = 34 | pages = 35788–97 | date = Aug 2004 | pmid = 15169763 | doi = 10.1074/jbc.M403927200 }}
*{{cite journal | author=Li J, Hawkins IC, Harvey CD, ''et al.'' |title=Regulation of alternative splicing by SRrp86 and its interacting proteins. |journal=Mol. Cell. Biol. |volume=23 |issue= 21 |pages= 7437-47 |year= 2003 |pmid= 14559993 |doi= }}
* {{cite journal | vauthors = Lai MC, Tarn WY | title = Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins | journal = The Journal of Biological Chemistry | volume = 279 | issue = 30 | pages = 31745–9 | date = Jul 2004 | pmid = 15184380 | doi = 10.1074/jbc.C400173200 }}
*{{cite journal | author=Yang L, Li N, Wang C, ''et al.'' |title=Cyclin L2, a novel RNA polymerase II-associated cyclin, is involved in pre-mRNA splicing and induces apoptosis of human hepatocellular carcinoma cells. |journal=J. Biol. Chem. |volume=279 |issue= 12 |pages= 11639-48 |year= 2004 |pmid= 14684736 |doi= 10.1074/jbc.M312895200 }}
* {{cite journal | vauthors = Huang Y, Yario TA, Steitz JA | title = A molecular link between SR protein dephosphorylation and mRNA export | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 26 | pages = 9666–70 | date = Jun 2004 | pmid = 15210956 | pmc = 470732 | doi = 10.1073/pnas.0403533101 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
* {{cite journal | vauthors = Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP | title = Large-scale characterization of HeLa cell nuclear phosphoproteins | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 101 | issue = 33 | pages = 12130–5 | date = Aug 2004 | pmid = 15302935 | pmc = 514446 | doi = 10.1073/pnas.0404720101 }}
*{{cite journal  | author=Ropers D, Ayadi L, Gattoni R, ''et al.'' |title=Differential effects of the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. |journal=J. Biol. Chem. |volume=279 |issue= 29 |pages= 29963-73 |year= 2004 |pmid= 15123677 |doi= 10.1074/jbc.M404452200 }}
* {{cite journal | vauthors = Jacquenet S, Decimo D, Muriaux D, Darlix JL | title = Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production | journal = Retrovirology | volume = 2 | issue =  | pages = 33 | year = 2006 | pmid = 15907217 | pmc = 1180853 | doi = 10.1186/1742-4690-2-33 }}
*{{cite journal | author=Will CL, Schneider C, Hossbach M, ''et al.'' |title=The human 18S U11/U12 snRNP contains a set of novel proteins not found in the U2-dependent spliceosome. |journal=RNA |volume=10 |issue= 6 |pages= 929-41 |year= 2004 |pmid= 15146077 |doi= }}
* {{cite journal | vauthors = van Abel D, Hölzel DR, Jain S, Lun FM, Zheng YW, Chen EZ, Sun H, Chiu RW, Lo YM, van Dijk M, Oudejans CB | title = SFRS7-mediated splicing of tau exon 10 is directly regulated by STOX1A in glial cells | journal = PLOS ONE | volume = 6 | issue = 7 | pages = e21994 | year = 2011 | pmid = 21755018 | pmc = 3130792 | doi = 10.1371/journal.pone.0021994 }}
*{{cite journal | author=Dettwiler S, Aringhieri C, Cardinale S, ''et al.'' |title=Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. |journal=J. Biol. Chem. |volume=279 |issue= 34 |pages= 35788-97 |year= 2005 |pmid= 15169763 |doi= 10.1074/jbc.M403927200 }}
*{{cite journal | author=Lai MC, Tarn WY |title=Hypophosphorylated ASF/SF2 binds TAP and is present in messenger ribonucleoproteins. |journal=J. Biol. Chem. |volume=279 |issue= 30 |pages= 31745-9 |year= 2004 |pmid= 15184380 |doi= 10.1074/jbc.C400173200 }}
*{{cite journal | author=Huang Y, Yario TA, Steitz JA |title=A molecular link between SR protein dephosphorylation and mRNA export. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 26 |pages= 9666-70 |year= 2004 |pmid= 15210956 |doi= 10.1073/pnas.0403533101 }}
*{{cite journal | author=Beausoleil SA, Jedrychowski M, Schwartz D, ''et al.'' |title=Large-scale characterization of HeLa cell nuclear phosphoproteins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130-5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | author=Jacquenet S, Decimo D, Muriaux D, Darlix JL |title=Dual effect of the SR proteins ASF/SF2, SC35 and 9G8 on HIV-1 RNA splicing and virion production. |journal=Retrovirology |volume=2 |issue=  |pages= 33 |year= 2006 |pmid= 15907217 |doi= 10.1186/1742-4690-2-33 }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
{{PDB Gallery|geneid=6432}}
{{WikiDoc Sources}}
{{NLM content}}

Latest revision as of 06:13, 11 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Serine/arginine-rich splicing factor 7 (SRSF7) also known as splicing factor, arginine/serine-rich 7 (SFRS7) or splicing factor 9G8 is a protein that in humans is encoded by the SRSF7 gene.[1]

Function

The protein encoded by this gene is a member of the serine/arginine (SR)-rich family of pre-mRNA splicing factors, which constitute part of the spliceosome. Each of these factors contains an RNA recognition motif (RRM) for binding RNA and an RS domain for binding other proteins. The RS domain is rich in serine and arginine residues and facilitates interaction between different SR splicing factors. In addition to being critical for mRNA splicing, the SR proteins have also been shown to be involved in mRNA export from the nucleus and in translation.[1]

Model organisms

Model organisms have been used in the study of SRSF7 function. A conditional knockout mouse line called Srsf7tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[2] Male and female animals underwent a standardized phenotypic screen[3] to determine the effects of deletion.[4][5][6][7] Additional screens performed: - In-depth immunological phenotyping[8]

References

  1. 1.0 1.1 "Entrez Gene: SFRS7 splicing factor, arginine/serine-rich 7, 35kDa".
  2. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  3. 3.0 3.1 "International Mouse Phenotyping Consortium".
  4. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  5. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  6. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  7. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (Jul 2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.
  8. 8.0 8.1 "Infection and Immunity Immunophenotyping (3i) Consortium".

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.