SATB1: Difference between revisions
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Bot: HTTP→HTTPS (v470) |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''SATB1 (special AT-rich sequence-binding protein-1)''' is a [[protein]] which in humans is encoded by the ''SATB1'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: SATB1 SATB homeobox 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6304| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
SATB1, the global chromatin organizer and transcription factor, has emerged as a key factor integrating higher-order chromatin architecture with gene regulation. Recent studies have unraveled the role of SATB1 in organization of chromatin 'loopscape' and its dynamic nature in response to physiological stimuli. At genome-wide level, SATB1 seems to play a role in organization of the transcriptionally poised chromatin. SATB1 organizes the MHC class-I locus into distinct chromatin loops by tethering MARs to nuclear matrix at fixed distances. Silencing of SATB1 mimics the effects of | SATB1, the global [[chromatin]] organizer and [[transcription factor]], has emerged as a key factor integrating higher-order chromatin architecture with gene regulation.<ref name="pmid16630892">{{cite journal | vauthors = Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, Galande S | title = Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo | journal = Molecular Cell | volume = 22 | issue = 2 | pages = 231–43 | date = Apr 2006 | pmid = 16630892 | doi = 10.1016/j.molcel.2006.03.010 }}</ref> Recent studies have unraveled the role of SATB1 in organization of chromatin 'loopscape' and its dynamic nature in response to physiological stimuli.<ref name="pmid17913490">{{cite journal | vauthors = Galande S, Purbey PK, Notani D, Kumar PP | title = The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1 | journal = Current Opinion in Genetics & Development | volume = 17 | issue = 5 | pages = 408–14 | date = Oct 2007 | pmid = 17913490 | doi = 10.1016/j.gde.2007.08.003 }}</ref> At genome-wide level, SATB1 seems to play a role in organization of the transcriptionally poised chromatin. SATB1 organizes the MHC class-I locus into distinct chromatin loops by tethering MARs to nuclear matrix at fixed distances. Silencing of SATB1 mimics the effects of [[interferon-gamma|IFN-γ]] treatment on chromatin loop architecture of the [[MHC class I]] locus and altered expression of genes within the locus. SATB1 has also been shown to induce breast cancer tumor growth and metastasis through the altered expression of large numbers of genes. | ||
== Interactions == | |||
==References== | SATB1 has been shown to [[Protein-protein interaction|interact]] with: | ||
{{ | {{div col|colwidth=20em}} | ||
==Further reading== | * [[BAZ1A]],<ref name = pmid12374985/> | ||
* [[CHD4]],<ref name = pmid12374985/> | |||
* [[CUTL1]],<ref name = pmid10373541>{{cite journal | vauthors = Liu J, Barnett A, Neufeld EJ, Dudley JP | title = Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation | journal = Molecular and Cellular Biology | volume = 19 | issue = 7 | pages = 4918–26 | date = Jul 1999 | pmid = 10373541 | pmc = 84297 | doi = 10.1128/mcb.19.7.4918}}</ref> | |||
* [[HDAC1]],<ref name = pmid12374985>{{cite journal | vauthors = Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T | title = SATB1 targets chromatin remodelling to regulate genes over long distances | journal = Nature | volume = 419 | issue = 6907 | pages = 641–5 | date = Oct 2002 | pmid = 12374985 | doi = 10.1038/nature01084 }}</ref> | |||
* [[MTA2]],<ref name = pmid12374985/> | |||
* [[POLR2J]]<ref name = pmid12036295>{{cite journal | vauthors = Durrin LK, Krontiris TG | title = The thymocyte-specific MAR binding protein, SATB1, interacts in vitro with a novel variant of DNA-directed RNA polymerase II, subunit 11 | journal = Genomics | volume = 79 | issue = 6 | pages = 809–17 | date = Jun 2002 | pmid = 12036295 | doi = 10.1006/geno.2002.6772 }}</ref> and | |||
* [[SMARCA5]].<ref name = pmid12374985/> | |||
{{Div col end}} | |||
== References == | |||
{{Reflist}} | |||
== Further reading == | |||
{{refbegin | 2}} | {{refbegin | 2}} | ||
* {{cite journal | vauthors = Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T | title = A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition | journal = Cell | volume = 70 | issue = 4 | pages = 631–45 | date = Aug 1992 | pmid = 1505028 | doi = 10.1016/0092-8674(92)90432-C }} | |||
* {{cite journal | vauthors = Robertson NG, Khetarpal U, Gutiérrez-Espeleta GA, Bieber FR, Morton CC | title = Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening | journal = Genomics | volume = 23 | issue = 1 | pages = 42–50 | date = Sep 1994 | pmid = 7829101 | doi = 10.1006/geno.1994.1457 }} | |||
*{{cite journal | * {{cite journal | vauthors = Nakagomi K, Kohwi Y, Dickinson LA, Kohwi-Shigematsu T | title = A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1 | journal = Molecular and Cellular Biology | volume = 14 | issue = 3 | pages = 1852–60 | date = Mar 1994 | pmid = 8114718 | pmc = 358543 | doi = }} | ||
*{{cite journal | * {{cite journal | vauthors = Xu L, Deng HX, Xia JH, Yang Y, Fan CH, Hung WY, Siddque T | title = Assignment of SATB1 to human chromosome band 3p23 by in situ hybridization | journal = Cytogenetics and Cell Genetics | volume = 77 | issue = 3-4 | pages = 205–6 | year = 1997 | pmid = 9284917 | doi = 10.1159/000134577 }} | ||
*{{cite journal | * {{cite journal | vauthors = Reddy PH, Stockburger E, Gillevet P, Tagle DA | title = Mapping and characterization of novel (CAG)n repeat cDNAs from adult human brain derived by the oligo capture method | journal = Genomics | volume = 46 | issue = 2 | pages = 174–82 | date = Dec 1997 | pmid = 9417904 | doi = 10.1006/geno.1997.5044 }} | ||
*{{cite journal | * {{cite journal | vauthors = Escalier D, Allenet B, Badrichani A, Garchon HJ | title = High level expression of the Xlr nuclear protein in immature thymocytes and colocalization with the matrix-associated region-binding SATB1 protein | journal = Journal of Immunology | volume = 162 | issue = 1 | pages = 292–8 | date = Jan 1999 | pmid = 9886398 | doi = }} | ||
*{{cite journal | * {{cite journal | vauthors = Liu J, Barnett A, Neufeld EJ, Dudley JP | title = Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation | journal = Molecular and Cellular Biology | volume = 19 | issue = 7 | pages = 4918–26 | date = Jul 1999 | pmid = 10373541 | pmc = 84297 | doi = 10.1128/mcb.19.7.4918}} | ||
*{{cite journal | * {{cite journal | vauthors = Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T | title = SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis | journal = Molecular and Cellular Biology | volume = 21 | issue = 16 | pages = 5591–604 | date = Aug 2001 | pmid = 11463840 | pmc = 87280 | doi = 10.1128/MCB.21.16.5591-5604.2001 }} | ||
*{{cite journal | * {{cite journal | vauthors = Kieffer LJ, Greally JM, Landres I, Nag S, Nakajima Y, Kohwi-Shigematsu T, Kavathas PB | title = Identification of a candidate regulatory region in the human CD8 gene complex by colocalization of DNase I hypersensitive sites and matrix attachment regions which bind SATB1 and GATA-3 | journal = Journal of Immunology | volume = 168 | issue = 8 | pages = 3915–22 | date = Apr 2002 | pmid = 11937547 | doi = 10.4049/jimmunol.168.8.3915 }} | ||
*{{cite journal | * {{cite journal | vauthors = Durrin LK, Krontiris TG | title = The thymocyte-specific MAR binding protein, SATB1, interacts in vitro with a novel variant of DNA-directed RNA polymerase II, subunit 11 | journal = Genomics | volume = 79 | issue = 6 | pages = 809–17 | date = Jun 2002 | pmid = 12036295 | doi = 10.1006/geno.2002.6772 }} | ||
*{{cite journal | * {{cite journal | vauthors = Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T | title = SATB1 targets chromatin remodelling to regulate genes over long distances | journal = Nature | volume = 419 | issue = 6907 | pages = 641–5 | date = Oct 2002 | pmid = 12374985 | doi = 10.1038/nature01084 }} | ||
*{{cite journal | * {{cite journal | vauthors = Cai S, Han HJ, Kohwi-Shigematsu T | title = Tissue-specific nuclear architecture and gene expression regulated by SATB1 | journal = Nature Genetics | volume = 34 | issue = 1 | pages = 42–51 | date = May 2003 | pmid = 12692553 | doi = 10.1038/ng1146 }} | ||
*{{cite journal | * {{cite journal | vauthors = Fujii Y, Kumatori A, Nakamura M | title = SATB1 makes a complex with p300 and represses gp91(phox) promoter activity | journal = Microbiology and Immunology | volume = 47 | issue = 10 | pages = 803–11 | year = 2004 | pmid = 14605447 | doi = 10.1111/j.1348-0421.2003.tb03438.x }} | ||
*{{cite journal | * {{cite journal | vauthors = Gocke CB, Yu H, Kang J | title = Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates | journal = The Journal of Biological Chemistry | volume = 280 | issue = 6 | pages = 5004–12 | date = Feb 2005 | pmid = 15561718 | doi = 10.1074/jbc.M411718200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Wen J, Huang S, Rogers H, Dickinson LA, Kohwi-Shigematsu T, Noguchi CT | title = SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression | journal = Blood | volume = 105 | issue = 8 | pages = 3330–9 | date = Apr 2005 | pmid = 15618465 | doi = 10.1182/blood-2004-08-2988 }} | ||
*{{cite journal | * {{cite journal | vauthors = Seo J, Lozano MM, Dudley JP | title = Nuclear matrix binding regulates SATB1-mediated transcriptional repression | journal = The Journal of Biological Chemistry | volume = 280 | issue = 26 | pages = 24600–9 | date = Jul 2005 | pmid = 15851481 | doi = 10.1074/jbc.M414076200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Nakayama Y, Mian IS, Kohwi-Shigematsu T, Ogawa T | title = A nuclear targeting determinant for SATB1, a genome organizer in the T cell lineage | journal = Cell Cycle | volume = 4 | issue = 8 | pages = 1099–106 | date = Aug 2005 | pmid = 15970696 | doi = 10.4161/cc.4.8.1862 }} | ||
*{{cite journal | * {{cite journal | vauthors = Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M | title = Towards a proteome-scale map of the human protein-protein interaction network | journal = Nature | volume = 437 | issue = 7062 | pages = 1173–8 | date = Oct 2005 | pmid = 16189514 | doi = 10.1038/nature04209 }} | ||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=6304}} | |||
{{ | {{gene-3-stub}} | ||
Latest revision as of 04:16, 28 October 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
SATB1 (special AT-rich sequence-binding protein-1) is a protein which in humans is encoded by the SATB1 gene.[1]
Function
SATB1, the global chromatin organizer and transcription factor, has emerged as a key factor integrating higher-order chromatin architecture with gene regulation.[2] Recent studies have unraveled the role of SATB1 in organization of chromatin 'loopscape' and its dynamic nature in response to physiological stimuli.[3] At genome-wide level, SATB1 seems to play a role in organization of the transcriptionally poised chromatin. SATB1 organizes the MHC class-I locus into distinct chromatin loops by tethering MARs to nuclear matrix at fixed distances. Silencing of SATB1 mimics the effects of IFN-γ treatment on chromatin loop architecture of the MHC class I locus and altered expression of genes within the locus. SATB1 has also been shown to induce breast cancer tumor growth and metastasis through the altered expression of large numbers of genes.
Interactions
SATB1 has been shown to interact with:
References
- ↑ "Entrez Gene: SATB1 SATB homeobox 1".
- ↑ Pavan Kumar P, Purbey PK, Sinha CK, Notani D, Limaye A, Jayani RS, Galande S (Apr 2006). "Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo". Molecular Cell. 22 (2): 231–43. doi:10.1016/j.molcel.2006.03.010. PMID 16630892.
- ↑ Galande S, Purbey PK, Notani D, Kumar PP (Oct 2007). "The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1". Current Opinion in Genetics & Development. 17 (5): 408–14. doi:10.1016/j.gde.2007.08.003. PMID 17913490.
- ↑ 4.0 4.1 4.2 4.3 4.4 Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (Oct 2002). "SATB1 targets chromatin remodelling to regulate genes over long distances". Nature. 419 (6907): 641–5. doi:10.1038/nature01084. PMID 12374985.
- ↑ Liu J, Barnett A, Neufeld EJ, Dudley JP (Jul 1999). "Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation". Molecular and Cellular Biology. 19 (7): 4918–26. doi:10.1128/mcb.19.7.4918. PMC 84297. PMID 10373541.
- ↑ Durrin LK, Krontiris TG (Jun 2002). "The thymocyte-specific MAR binding protein, SATB1, interacts in vitro with a novel variant of DNA-directed RNA polymerase II, subunit 11". Genomics. 79 (6): 809–17. doi:10.1006/geno.2002.6772. PMID 12036295.
Further reading
- Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T (Aug 1992). "A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition". Cell. 70 (4): 631–45. doi:10.1016/0092-8674(92)90432-C. PMID 1505028.
- Robertson NG, Khetarpal U, Gutiérrez-Espeleta GA, Bieber FR, Morton CC (Sep 1994). "Isolation of novel and known genes from a human fetal cochlear cDNA library using subtractive hybridization and differential screening". Genomics. 23 (1): 42–50. doi:10.1006/geno.1994.1457. PMID 7829101.
- Nakagomi K, Kohwi Y, Dickinson LA, Kohwi-Shigematsu T (Mar 1994). "A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1". Molecular and Cellular Biology. 14 (3): 1852–60. PMC 358543. PMID 8114718.
- Xu L, Deng HX, Xia JH, Yang Y, Fan CH, Hung WY, Siddque T (1997). "Assignment of SATB1 to human chromosome band 3p23 by in situ hybridization". Cytogenetics and Cell Genetics. 77 (3–4): 205–6. doi:10.1159/000134577. PMID 9284917.
- Reddy PH, Stockburger E, Gillevet P, Tagle DA (Dec 1997). "Mapping and characterization of novel (CAG)n repeat cDNAs from adult human brain derived by the oligo capture method". Genomics. 46 (2): 174–82. doi:10.1006/geno.1997.5044. PMID 9417904.
- Escalier D, Allenet B, Badrichani A, Garchon HJ (Jan 1999). "High level expression of the Xlr nuclear protein in immature thymocytes and colocalization with the matrix-associated region-binding SATB1 protein". Journal of Immunology. 162 (1): 292–8. PMID 9886398.
- Liu J, Barnett A, Neufeld EJ, Dudley JP (Jul 1999). "Homeoproteins CDP and SATB1 interact: potential for tissue-specific regulation". Molecular and Cellular Biology. 19 (7): 4918–26. doi:10.1128/mcb.19.7.4918. PMC 84297. PMID 10373541.
- Galande S, Dickinson LA, Mian IS, Sikorska M, Kohwi-Shigematsu T (Aug 2001). "SATB1 cleavage by caspase 6 disrupts PDZ domain-mediated dimerization, causing detachment from chromatin early in T-cell apoptosis". Molecular and Cellular Biology. 21 (16): 5591–604. doi:10.1128/MCB.21.16.5591-5604.2001. PMC 87280. PMID 11463840.
- Kieffer LJ, Greally JM, Landres I, Nag S, Nakajima Y, Kohwi-Shigematsu T, Kavathas PB (Apr 2002). "Identification of a candidate regulatory region in the human CD8 gene complex by colocalization of DNase I hypersensitive sites and matrix attachment regions which bind SATB1 and GATA-3". Journal of Immunology. 168 (8): 3915–22. doi:10.4049/jimmunol.168.8.3915. PMID 11937547.
- Durrin LK, Krontiris TG (Jun 2002). "The thymocyte-specific MAR binding protein, SATB1, interacts in vitro with a novel variant of DNA-directed RNA polymerase II, subunit 11". Genomics. 79 (6): 809–17. doi:10.1006/geno.2002.6772. PMID 12036295.
- Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (Oct 2002). "SATB1 targets chromatin remodelling to regulate genes over long distances". Nature. 419 (6907): 641–5. doi:10.1038/nature01084. PMID 12374985.
- Cai S, Han HJ, Kohwi-Shigematsu T (May 2003). "Tissue-specific nuclear architecture and gene expression regulated by SATB1". Nature Genetics. 34 (1): 42–51. doi:10.1038/ng1146. PMID 12692553.
- Fujii Y, Kumatori A, Nakamura M (2004). "SATB1 makes a complex with p300 and represses gp91(phox) promoter activity". Microbiology and Immunology. 47 (10): 803–11. doi:10.1111/j.1348-0421.2003.tb03438.x. PMID 14605447.
- Gocke CB, Yu H, Kang J (Feb 2005). "Systematic identification and analysis of mammalian small ubiquitin-like modifier substrates". The Journal of Biological Chemistry. 280 (6): 5004–12. doi:10.1074/jbc.M411718200. PMID 15561718.
- Wen J, Huang S, Rogers H, Dickinson LA, Kohwi-Shigematsu T, Noguchi CT (Apr 2005). "SATB1 family protein expressed during early erythroid differentiation modifies globin gene expression". Blood. 105 (8): 3330–9. doi:10.1182/blood-2004-08-2988. PMID 15618465.
- Seo J, Lozano MM, Dudley JP (Jul 2005). "Nuclear matrix binding regulates SATB1-mediated transcriptional repression". The Journal of Biological Chemistry. 280 (26): 24600–9. doi:10.1074/jbc.M414076200. PMID 15851481.
- Nakayama Y, Mian IS, Kohwi-Shigematsu T, Ogawa T (Aug 2005). "A nuclear targeting determinant for SATB1, a genome organizer in the T cell lineage". Cell Cycle. 4 (8): 1099–106. doi:10.4161/cc.4.8.1862. PMID 15970696.
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. doi:10.1038/nature04209. PMID 16189514.
This article on a gene on human chromosome 3 is a stub. You can help Wikipedia by expanding it. |