EXOC5: Difference between revisions
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Exocyst complex component 5''' is a [[protein]] that in humans is encoded by the ''EXOC5'' [[gene]].<ref name="pmid9119050">{{cite journal | vauthors = Guo W, Roth D, Gatti E, De Camilli P, Novick P | title = Identification and characterization of homologues of the Exocyst component Sec10p | journal = FEBS Lett | volume = 404 | issue = 2-3 | pages = 135–9 | date = Apr 1997 | pmid = 9119050 | pmc = | doi = 10.1016/S0014-5793(97)00109-9 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: EXOC5 exocyst complex component 5| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10640| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
The protein encoded by this gene is a component of the exocyst complex, a multiple protein complex essential for targeting exocytic vesicles to specific docking sites on the plasma membrane. Though best characterized in yeast, the component proteins and functions of exocyst complex have been demonstrated to be highly conserved in higher eukaryotes. At least eight components of the exocyst complex, including this protein, are found to interact with the actin cytoskeletal remodeling and vesicle transport machinery. The complex is also essential for the biogenesis of epithelial cell surface polarity.<ref name="entrez"/> | |||
==References== | == Interactions == | ||
{{reflist | |||
==Further reading== | EXOC5 has been shown to [[Protein-protein interaction|interact]] with [[Arf6]].<ref name=pmid14662749>{{cite journal | vauthors = Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rossé C, Camonis J, Chavrier P | title = ARF6 controls post-endocytic recycling through its downstream exocyst complex effector | journal = J. Cell Biol. | volume = 163 | issue = 5 | pages = 1111–21 | date = Dec 2003 | pmid = 14662749 | pmc = 2173613 | doi = 10.1083/jcb.200305029 }}</ref> | ||
== References == | |||
{{reflist}} | |||
{{Clear}} | |||
== Further reading == | |||
{{refbegin | 2}} | {{refbegin | 2}} | ||
* {{cite journal | vauthors = Hsu SC, TerBush D, Abraham M, Guo W | title = The exocyst complex in polarized exocytosis. | journal = Int. Rev. Cytol. | volume = 233 | issue = | pages = 243–65 | year = 2004 | pmid = 15037366 | doi = 10.1016/S0074-7696(04)33006-8 }} | |||
* {{cite journal | vauthors = Bonaldo MF, Lennon G, Soares MB | title = Normalization and subtraction: two approaches to facilitate gene discovery. | journal = Genome Res. | volume = 6 | issue = 9 | pages = 791–806 | year = 1997 | pmid = 8889548 | doi = 10.1101/gr.6.9.791 }} | |||
*{{cite journal | * {{cite journal | vauthors = Kee Y, Yoo JS, Hazuka CD, Peterson KE, Hsu SC, Scheller RH | title = Subunit structure of the mammalian exocyst complex. | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 94 | issue = 26 | pages = 14438–43 | year = 1998 | pmid = 9405631 | pmc = 25013 | doi = 10.1073/pnas.94.26.14438 }} | ||
*{{cite journal | * {{cite journal | vauthors = Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH | title = Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. | journal = Neuron | volume = 20 | issue = 6 | pages = 1111–22 | year = 1998 | pmid = 9655500 | doi = 10.1016/S0896-6273(00)80493-6 }} | ||
* {{cite journal | vauthors = Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ | title = The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene. | journal = J. Biol. Chem. | volume = 276 | issue = 32 | pages = 29792–7 | year = 2001 | pmid = 11406615 | doi = 10.1074/jbc.C100320200 }} | |||
*{{cite journal | * {{cite journal | vauthors = Polzin A, Shipitsin M, Goi T, Feig LA, Turner TJ | title = Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles. | journal = Mol. Cell. Biol. | volume = 22 | issue = 6 | pages = 1714–22 | year = 2002 | pmid = 11865051 | pmc = 135608 | doi = 10.1128/MCB.22.6.1714-1722.2002 }} | ||
*{{cite journal | * {{cite journal | vauthors = Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR | title = The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. | journal = Nature | volume = 422 | issue = 6932 | pages = 629–33 | year = 2003 | pmid = 12687004 | doi = 10.1038/nature01533 }} | ||
*{{cite journal | * {{cite journal | vauthors = Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA | title = Ral GTPases regulate exocyst assembly through dual subunit interactions. | journal = J. Biol. Chem. | volume = 278 | issue = 51 | pages = 51743–8 | year = 2004 | pmid = 14525976 | doi = 10.1074/jbc.M308702200 }} | ||
*{{cite journal | * {{cite journal | vauthors = Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rossé C, Camonis J, Chavrier P | title = ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. | journal = J. Cell Biol. | volume = 163 | issue = 5 | pages = 1111–21 | year = 2004 | pmid = 14662749 | pmc = 2173613 | doi = 10.1083/jcb.200305029 }} | ||
* {{cite journal | vauthors = Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW | title = Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation. | journal = Nat. Biotechnol. | volume = 22 | issue = 6 | pages = 707–16 | year = 2005 | pmid = 15146197 | doi = 10.1038/nbt971 }} | |||
*{{cite journal | * {{cite journal | vauthors = Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY | title = A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. | journal = Cell | volume = 125 | issue = 4 | pages = 801–14 | year = 2006 | pmid = 16713569 | doi = 10.1016/j.cell.2006.03.032 }} | ||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | |||
{{gene-14-stub}} |
Revision as of 00:40, 31 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Exocyst complex component 5 is a protein that in humans is encoded by the EXOC5 gene.[1][2]
Function
The protein encoded by this gene is a component of the exocyst complex, a multiple protein complex essential for targeting exocytic vesicles to specific docking sites on the plasma membrane. Though best characterized in yeast, the component proteins and functions of exocyst complex have been demonstrated to be highly conserved in higher eukaryotes. At least eight components of the exocyst complex, including this protein, are found to interact with the actin cytoskeletal remodeling and vesicle transport machinery. The complex is also essential for the biogenesis of epithelial cell surface polarity.[2]
Interactions
EXOC5 has been shown to interact with Arf6.[3]
References
- ↑ Guo W, Roth D, Gatti E, De Camilli P, Novick P (Apr 1997). "Identification and characterization of homologues of the Exocyst component Sec10p". FEBS Lett. 404 (2–3): 135–9. doi:10.1016/S0014-5793(97)00109-9. PMID 9119050.
- ↑ 2.0 2.1 "Entrez Gene: EXOC5 exocyst complex component 5".
- ↑ Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rossé C, Camonis J, Chavrier P (Dec 2003). "ARF6 controls post-endocytic recycling through its downstream exocyst complex effector". J. Cell Biol. 163 (5): 1111–21. doi:10.1083/jcb.200305029. PMC 2173613. PMID 14662749.
Further reading
- Hsu SC, TerBush D, Abraham M, Guo W (2004). "The exocyst complex in polarized exocytosis". Int. Rev. Cytol. 233: 243–65. doi:10.1016/S0074-7696(04)33006-8. PMID 15037366.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Kee Y, Yoo JS, Hazuka CD, Peterson KE, Hsu SC, Scheller RH (1998). "Subunit structure of the mammalian exocyst complex". Proc. Natl. Acad. Sci. U.S.A. 94 (26): 14438–43. doi:10.1073/pnas.94.26.14438. PMC 25013. PMID 9405631.
- Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH (1998). "Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments". Neuron. 20 (6): 1111–22. doi:10.1016/S0896-6273(00)80493-6. PMID 9655500.
- Brymora A, Valova VA, Larsen MR, Roufogalis BD, Robinson PJ (2001). "The brain exocyst complex interacts with RalA in a GTP-dependent manner: identification of a novel mammalian Sec3 gene and a second Sec15 gene". J. Biol. Chem. 276 (32): 29792–7. doi:10.1074/jbc.C100320200. PMID 11406615.
- Polzin A, Shipitsin M, Goi T, Feig LA, Turner TJ (2002). "Ral-GTPase influences the regulation of the readily releasable pool of synaptic vesicles". Mol. Cell. Biol. 22 (6): 1714–22. doi:10.1128/MCB.22.6.1714-1722.2002. PMC 135608. PMID 11865051.
- Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR (2003). "The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin". Nature. 422 (6932): 629–33. doi:10.1038/nature01533. PMID 12687004.
- Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA (2004). "Ral GTPases regulate exocyst assembly through dual subunit interactions". J. Biol. Chem. 278 (51): 51743–8. doi:10.1074/jbc.M308702200. PMID 14525976.
- Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rossé C, Camonis J, Chavrier P (2004). "ARF6 controls post-endocytic recycling through its downstream exocyst complex effector". J. Cell Biol. 163 (5): 1111–21. doi:10.1083/jcb.200305029. PMC 2173613. PMID 14662749.
- Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW (2005). "Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation". Nat. Biotechnol. 22 (6): 707–16. doi:10.1038/nbt971. PMID 15146197.
- Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY (2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569.
This article on a gene on human chromosome 14 is a stub. You can help Wikipedia by expanding it. |