VPS35: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
m Structure: task, replaced: J. Cell. Sci. → J. Cell Sci. using AWB
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Vacuolar protein sorting-associated protein 35''' is a [[protein]] that in humans is encoded by the ''VPS35'' [[gene]].<ref name="pmid11112353">{{cite journal | vauthors = Zhang P, Yu L, Gao J, Fu Q, Dai F, Zhao Y, Zheng L, Zhao S | title = Cloning and characterization of human VPS35 and mouse Vps35 and mapping of VPS35 to human chromosome 16q13-q21 | journal = Genomics | volume = 70 | issue = 2 | pages = 253–7 |date=Jan 2001 | pmid = 11112353 | pmc = | doi = 10.1006/geno.2000.6380 }}</ref><ref name="entrez"/>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
This gene belongs to a group of [[vacuole|vacuolar]] protein sorting (VPS) genes. The encoded protein is a component of a large multimeric complex, termed the [[retromer]] complex, involved in retrograde transport of proteins from [[endosomes]] to the [[Golgi apparatus|trans-Golgi network]]. The close structural similarity between the yeast and human proteins that make up this complex suggests a similarity in function. Expression studies in yeast and mammalian cells indicate that this protein interacts directly with VPS35, which serves as the core of the retromer complex.<ref name="entrez">{{cite web | title = Entrez Gene: VPS35 vacuolar protein sorting 35 homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55737| accessdate = }}</ref>
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Vacuolar protein sorting 35 homolog (S. cerevisiae)
| HGNCid = 13487
| Symbol = VPS35
| AltSymbols =; DKFZp434E1211; DKFZp434P1672; FLJ10752; FLJ13588; FLJ20388; MEM3
| OMIM = 606931
| ECnumber = 
| Homologene = 6221
| MGIid = 1890467
| GeneAtlas_image1 = PBB_GE_VPS35_217727_x_at_tn.png
| Function = {{GNF_GO|id=GO:0005515 |text = protein binding}}
| Component = {{GNF_GO|id=GO:0005768 |text = endosome}} {{GNF_GO|id=GO:0005829 |text = cytosol}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0015031 |text = protein transport}} {{GNF_GO|id=GO:0042147 |text = retrograde transport, endosome to Golgi}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 55737
    | Hs_Ensembl = ENSG00000069329
    | Hs_RefseqProtein = NP_060676
    | Hs_RefseqmRNA = NM_018206
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 16
    | Hs_GenLoc_start = 45251095
    | Hs_GenLoc_end = 45280593
    | Hs_Uniprot = Q96QK1
    | Mm_EntrezGene = 65114
    | Mm_Ensembl = ENSMUSG00000031696
    | Mm_RefseqmRNA = NM_022997
    | Mm_RefseqProtein = NP_075373
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 8
    | Mm_GenLoc_start = 88151235
    | Mm_GenLoc_end = 88185062
    | Mm_Uniprot = Q3TJ43
  }}
}}
'''Vacuolar protein sorting 35 homolog (S. cerevisiae)''', also known as '''VPS35''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: VPS35 vacuolar protein sorting 35 homolog (S. cerevisiae)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55737| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
== Structure ==
{{PBB_Summary
 
| section_title =  
Vps35 is the largest subunit of [[retromer]] with the molecular weight of 92-kDa and functions as the central platform for the assembly of [[VPS26A|Vps26]] and [[VPS29|Vps29]].<ref name="pmid17891154">{{cite journal | vauthors = Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH | title = Functional architecture of the retromer cargo-recognition complex | journal = Nature | volume = 449 | issue = 7165 | pages = 1063–7 |date=October 2007 | pmid = 17891154 | pmc = 2377034 | doi = 10.1038/nature06216 }}</ref> Vps35 resembles many other [[alpha solenoid|helical solenoid proteins]] including AP adaptor protein complexes that are characterized with repeated structural units in a continuous superhelix arrangement involved in coated vesicle trafficking. The curved surface of the 6 even-numbered [[alpha helix|helices]] within solenoid structure with series of ridges separating [[hydrophobic]] grooves function as potential cargo binding sites.<ref name="pmid10198044">{{cite journal | vauthors = Nothwehr SF, Bruinsma P, Strawn LA | title = Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment | journal = Mol. Biol. Cell | volume = 10 | issue = 4 | pages = 875–90 |date=April 1999 | pmid = 10198044 | pmc = 25208 | doi = 10.1091/mbc.10.4.875}}</ref> The C-terminal of Vps35 contains an α-solenoid fold that fits into the metal binding pocket of Vps29.<ref name="pmid15965486">{{cite journal | vauthors = Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ | title = Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly | journal = Nat. Struct. Mol. Biol. | volume = 12 | issue = 7 | pages = 594–602 |date=July 2005 | pmid = 15965486 | doi = 10.1038/nsmb954 }}</ref>
| summary_text = This gene belongs to a group of vacuolar protein sorting (VPS) genes. The encoded protein is a component of a large multimeric complex, termed the retromer complex, involved in retrograde transport of proteins from endosomes to the trans-Golgi network. The close structural similarity between the yeast and human proteins that make up this complex suggests a similarity in function. Expression studies in yeast and mammalian cells indicate that this protein interacts directly with VPS35, which serves as the core of the retromer complex.<ref name="entrez">{{cite web | title = Entrez Gene: VPS35 vacuolar protein sorting 35 homolog (S. cerevisiae)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=55737| accessdate = }}</ref>
 
}}
A conserved PRLYL motif at the [[N-terminus]] of Vps35 is involved in the binding of Vps26.<ref name="pmid11598206">{{cite journal | vauthors = Reddy JV, Seaman MN | title = Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval | journal = Mol. Biol. Cell | volume = 12 | issue = 10 | pages = 3242–56 |date=October 2001 | pmid = 11598206 | pmc = 60170 | doi = 10.1091/mbc.12.10.3242}}</ref><ref name="pmid17916227">{{cite journal | vauthors = Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P | title = Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly | journal = Traffic | volume = 8 | issue = 12 | pages = 1829–40 |date=December 2007 | pmid = 17916227 | pmc = 2532708 | doi = 10.1111/j.1600-0854.2007.00658.x }}</ref> The structural binding motifs enable this subunit to act as a linker between the [[sorting nexin|SNX]] dimers and Vps trimer complex, and the binding sites targeting to the N-terminal region of SNX subunits are located at the both ends of the trimer. A study has shown that the knockdown of Vps35 in human [[HEp-2]] epithelial cells had defect on the [[endosomal]] recycling of [[transferrin]] by [[DMT1]] due to the mis-sorting of DMT1-II to the lysosomal membrane associated protein ([[LAMP2]]) structures.<ref name="pmid20164305">{{cite journal | vauthors = Tabuchi M, Yanatori I, Kawai Y, Kishi F | title = Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1 | journal = J. Cell Sci. | volume = 123 | issue = Pt 5 | pages = 756–66 |date=March 2010 | pmid = 20164305 | doi = 10.1242/jcs.060574 }}</ref>


==References==
==References==
{{reflist|2}}
{{reflist|colwidth=35em}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin|colwidth=35em}}
{{PBB_Further_reading
*{{cite journal  | vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }}
| citations =
*{{cite journal  | vauthors=Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA |title=A "double adaptor" method for improved shotgun library construction |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107–13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
*{{cite journal  | author=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1-2 |pages= 171-4 |year= 1994 |pmid= 8125298 |doi=  }}
*{{cite journal  | vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }}
*{{cite journal  | author=Andersson B, Wentland MA, Ricafrente JY, ''et al.'' |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107-13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
*{{cite journal  | vauthors=Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA |title=Large-Scale Concatenation cDNA Sequencing |journal=Genome Res. |volume=7 |issue= 4 |pages= 353–8 |year= 1997 |pmid= 9110174 |doi= 10.1101/gr.7.4.353| pmc=139146 }}
*{{cite journal  | author=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery. |journal=Genome Res. |volume=6 |issue= 9 |pages= 791-806 |year= 1997 |pmid= 8889548 |doi=  }}
*{{cite journal  | vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }}
*{{cite journal  | author=Yu W, Andersson B, Worley KC, ''et al.'' |title=Large-scale concatenation cDNA sequencing. |journal=Genome Res. |volume=7 |issue= 4 |pages= 353-8 |year= 1997 |pmid= 9110174 |doi=  }}
*{{cite journal  | vauthors=Edgar AJ, Polak JM |title=Human homologues of yeast vacuolar protein sorting 29 and 35 |journal=Biochem. Biophys. Res. Commun. |volume=277 |issue= 3 |pages= 622–30 |year= 2000 |pmid= 11062004 |doi= 10.1006/bbrc.2000.3727 }}
*{{cite journal  | author=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, ''et al.'' |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library. |journal=Gene |volume=200 |issue= 1-2 |pages= 149-56 |year= 1997 |pmid= 9373149 |doi=  }}
*{{cite journal  | vauthors=Hartley JL, Temple GF, Brasch MA |title=DNA Cloning Using In Vitro Site-Specific Recombination |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788–95 |year= 2001 |pmid= 11076863 |doi=10.1101/gr.143000  | pmc=310948 }}
*{{cite journal  | author=Edgar AJ, Polak JM |title=Human homologues of yeast vacuolar protein sorting 29 and 35. |journal=Biochem. Biophys. Res. Commun. |volume=277 |issue= 3 |pages= 622-30 |year= 2000 |pmid= 11062004 |doi= 10.1006/bbrc.2000.3727 }}
*{{cite journal  | vauthors=Haft CR, de la Luz Sierra M, Bafford R, Lesniak MA, Barr VA, Taylor SI |title=Human Orthologs of Yeast Vacuolar Protein Sorting Proteins Vps26, 29, and 35: Assembly into Multimeric Complexes |journal=Mol. Biol. Cell |volume=11 |issue= 12 |pages= 4105–16 |year= 2001 |pmid= 11102511 |doi=  10.1091/mbc.11.12.4105| pmc=15060 }}
*{{cite journal  | author=Hartley JL, Temple GF, Brasch MA |title=DNA cloning using in vitro site-specific recombination. |journal=Genome Res. |volume=10 |issue= 11 |pages= 1788-95 |year= 2001 |pmid= 11076863 |doi=  }}
*{{cite journal  | vauthors=Vergés M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE |title=The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor |journal=Nat. Cell Biol. |volume=6 |issue= 8 |pages= 763–9 |year= 2004 |pmid= 15247922 |doi= 10.1038/ncb1153 }}
*{{cite journal  | author=Haft CR, de la Luz Sierra M, Bafford R, ''et al.'' |title=Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. |journal=Mol. Biol. Cell |volume=11 |issue= 12 |pages= 4105-16 |year= 2001 |pmid= 11102511 |doi=  }}
*{{cite journal  | vauthors=Mingot JM, Bohnsack MT, Jäkle U, Görlich D |title=Exportin 7 defines a novel general nuclear export pathway |journal=EMBO J. |volume=23 |issue= 16 |pages= 3227–36 |year= 2005 |pmid= 15282546 |doi= 10.1038/sj.emboj.7600338  | pmc=514512 }}
*{{cite journal  | author=Zhang P, Yu L, Gao J, ''et al.'' |title=Cloning and characterization of human VPS35 and mouse Vps35 and mapping of VPS35 to human chromosome 16q13-q21. |journal=Genomics |volume=70 |issue= 2 |pages= 253-7 |year= 2001 |pmid= 11112353 |doi= 10.1006/geno.2000.6380 }}
*{{cite journal  | author=Wiemann S, Weil B, Wellenreuther R, ''et al.'' |title=Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs. |journal=Genome Res. |volume=11 |issue= 3 |pages= 422-35 |year= 2001 |pmid= 11230166 |doi= 10.1101/gr.154701 }}
*{{cite journal  | author=Simpson JC, Wellenreuther R, Poustka A, ''et al.'' |title=Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. |journal=EMBO Rep. |volume=1 |issue= 3 |pages= 287-92 |year= 2001 |pmid= 11256614 |doi= 10.1093/embo-reports/kvd058 }}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | author=Vergés M, Luton F, Gruber C, ''et al.'' |title=The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. |journal=Nat. Cell Biol. |volume=6 |issue= 8 |pages= 763-9 |year= 2004 |pmid= 15247922 |doi= 10.1038/ncb1153 }}
*{{cite journal  | author=Mingot JM, Bohnsack MT, Jäkle U, Görlich D |title=Exportin 7 defines a novel general nuclear export pathway. |journal=EMBO J. |volume=23 |issue= 16 |pages= 3227-36 |year= 2005 |pmid= 15282546 |doi= 10.1038/sj.emboj.7600338 }}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal | author=Wiemann S, Arlt D, Huber W, ''et al.'' |title=From ORFeome to biology: a functional genomics pipeline. |journal=Genome Res. |volume=14 |issue= 10B |pages= 2136-44 |year= 2004 |pmid= 15489336 |doi= 10.1101/gr.2576704 }}
*{{cite journal  | author=Rual JF, Venkatesan K, Hao T, ''et al.'' |title=Towards a proteome-scale map of the human protein-protein interaction network. |journal=Nature |volume=437 |issue= 7062 |pages= 1173-8 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 }}
*{{cite journal  | author=Kimura K, Wakamatsu A, Suzuki Y, ''et al.'' |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. |journal=Genome Res. |volume=16 |issue= 1 |pages= 55-65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 }}
*{{cite journal  | author=Mehrle A, Rosenfelder H, Schupp I, ''et al.'' |title=The LIFEdb database in 2006. |journal=Nucleic Acids Res. |volume=34 |issue= Database issue |pages= D415-8 |year= 2006 |pmid= 16381901 |doi= 10.1093/nar/gkj139 }}
}}
{{refend}}
{{refend}}


{{protein-stub}}
 
{{WikiDoc Sources}}
{{gene-16-stub}}

Latest revision as of 22:36, 8 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Vacuolar protein sorting-associated protein 35 is a protein that in humans is encoded by the VPS35 gene.[1][2]

This gene belongs to a group of vacuolar protein sorting (VPS) genes. The encoded protein is a component of a large multimeric complex, termed the retromer complex, involved in retrograde transport of proteins from endosomes to the trans-Golgi network. The close structural similarity between the yeast and human proteins that make up this complex suggests a similarity in function. Expression studies in yeast and mammalian cells indicate that this protein interacts directly with VPS35, which serves as the core of the retromer complex.[2]

Structure

Vps35 is the largest subunit of retromer with the molecular weight of 92-kDa and functions as the central platform for the assembly of Vps26 and Vps29.[3] Vps35 resembles many other helical solenoid proteins including AP adaptor protein complexes that are characterized with repeated structural units in a continuous superhelix arrangement involved in coated vesicle trafficking. The curved surface of the 6 even-numbered helices within solenoid structure with series of ridges separating hydrophobic grooves function as potential cargo binding sites.[4] The C-terminal of Vps35 contains an α-solenoid fold that fits into the metal binding pocket of Vps29.[5]

A conserved PRLYL motif at the N-terminus of Vps35 is involved in the binding of Vps26.[6][7] The structural binding motifs enable this subunit to act as a linker between the SNX dimers and Vps trimer complex, and the binding sites targeting to the N-terminal region of SNX subunits are located at the both ends of the trimer. A study has shown that the knockdown of Vps35 in human HEp-2 epithelial cells had defect on the endosomal recycling of transferrin by DMT1 due to the mis-sorting of DMT1-II to the lysosomal membrane associated protein (LAMP2) structures.[8]

References

  1. Zhang P, Yu L, Gao J, Fu Q, Dai F, Zhao Y, Zheng L, Zhao S (Jan 2001). "Cloning and characterization of human VPS35 and mouse Vps35 and mapping of VPS35 to human chromosome 16q13-q21". Genomics. 70 (2): 253–7. doi:10.1006/geno.2000.6380. PMID 11112353.
  2. 2.0 2.1 "Entrez Gene: VPS35 vacuolar protein sorting 35 homolog (S. cerevisiae)".
  3. Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, Steven AC, Bonifacino JS, Hurley JH (October 2007). "Functional architecture of the retromer cargo-recognition complex". Nature. 449 (7165): 1063–7. doi:10.1038/nature06216. PMC 2377034. PMID 17891154.
  4. Nothwehr SF, Bruinsma P, Strawn LA (April 1999). "Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment". Mol. Biol. Cell. 10 (4): 875–90. doi:10.1091/mbc.10.4.875. PMC 25208. PMID 10198044.
  5. Collins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ (July 2005). "Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly". Nat. Struct. Mol. Biol. 12 (7): 594–602. doi:10.1038/nsmb954. PMID 15965486.
  6. Reddy JV, Seaman MN (October 2001). "Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval". Mol. Biol. Cell. 12 (10): 3242–56. doi:10.1091/mbc.12.10.3242. PMC 60170. PMID 11598206.
  7. Zhao X, Nothwehr S, Lara-Lemus R, Zhang BY, Peter H, Arvan P (December 2007). "Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly". Traffic. 8 (12): 1829–40. doi:10.1111/j.1600-0854.2007.00658.x. PMC 2532708. PMID 17916227.
  8. Tabuchi M, Yanatori I, Kawai Y, Kishi F (March 2010). "Retromer-mediated direct sorting is required for proper endosomal recycling of the mammalian iron transporter DMT1". J. Cell Sci. 123 (Pt 5): 756–66. doi:10.1242/jcs.060574. PMID 20164305.

Further reading