AMFR: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Autocrine motility factor receptor, isoform 2''' is a [[protein]] that in humans is encoded by the ''AMFR'' [[gene]].<ref name="pmid1649192">{{cite journal | vauthors = Watanabe H, Carmi P, Hogan V, Raz T, Silletti S, Nabi IR, Raz A | title = Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor | journal = J Biol Chem | volume = 266 | issue = 20 | pages = 13442–8 |date=Aug 1991 | pmid = 1649192 | pmc =  | doi =  }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: AMFR autocrine motility factor receptor| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=267| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Autocrine motility factor receptor
| HGNCid = 463
| Symbol = AMFR
| AltSymbols =; GP78; RNF45
| OMIM = 603243
| ECnumber = 
| Homologene = 888
| MGIid = 1345634
| GeneAtlas_image1 = PBB_GE_AMFR_202203_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_AMFR_202204_s_at_tn.png
| Function = {{GNF_GO|id=GO:0004842 |text = ubiquitin-protein ligase activity}} {{GNF_GO|id=GO:0004872 |text = receptor activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0008270 |text = zinc ion binding}} {{GNF_GO|id=GO:0016874 |text = ligase activity}} {{GNF_GO|id=GO:0046872 |text = metal ion binding}}
| Component = {{GNF_GO|id=GO:0005783 |text = endoplasmic reticulum}} {{GNF_GO|id=GO:0016020 |text = membrane}} {{GNF_GO|id=GO:0016021 |text = integral to membrane}} {{GNF_GO|id=GO:0030176 |text = integral to endoplasmic reticulum membrane}}
| Process = {{GNF_GO|id=GO:0006512 |text = ubiquitin cycle}} {{GNF_GO|id=GO:0006928 |text = cell motility}} {{GNF_GO|id=GO:0007165 |text = signal transduction}} {{GNF_GO|id=GO:0030433 |text = ER-associated protein catabolic process}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 267
    | Hs_Ensembl = ENSG00000159461
    | Hs_RefseqProtein = NP_001135
    | Hs_RefseqmRNA = NM_001144
    | Hs_GenLoc_db =   
    | Hs_GenLoc_chr = 16
    | Hs_GenLoc_start = 54952865
    | Hs_GenLoc_end = 55016804
    | Hs_Uniprot = Q9UKV5
    | Mm_EntrezGene = 23802
    | Mm_Ensembl = ENSMUSG00000031751
    | Mm_RefseqmRNA = XM_990903
    | Mm_RefseqProtein = XP_995997
    | Mm_GenLoc_db =   
    | Mm_GenLoc_chr = 8
    | Mm_GenLoc_start = 96861055
    | Mm_GenLoc_end = 96901971
    | Mm_Uniprot = Q3TCI2
  }}
}}
'''Autocrine motility factor receptor''', also known as '''AMFR''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: AMFR autocrine motility factor receptor| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=267| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = Autocrine motility factor is a tumor motility-stimulating protein secreted by tumor cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. The receptor, which shows some sequence similarity to tumor protein p53, is localized to the leading and trailing edges of carcinoma cells.<ref name="entrez">{{cite web | title = Entrez Gene: AMFR autocrine motility factor receptor| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=267| accessdate = }}</ref>
| summary_text = Autocrine motility factor is a tumor motility-stimulating protein secreted by tumor cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. The receptor, which shows some sequence similarity to tumor protein p53, is localized to the leading and trailing edges of carcinoma cells.<ref name="entrez"/>
}}
}}
==Model organisms==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Amfr'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
|-
| [[Homozygote]] viability || bgcolor="#C40000"|Abnormal
|-
| [[Recessive]] lethal study || bgcolor="#488ED3"|Normal
|-
| Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Blood plasma|Plasma]] [[immunoglobulin]]s || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| Skin Histopathology || bgcolor="#488ED3"|Normal
|-
| Brain histopathology || bgcolor="#488ED3"|Normal
|-
| Eye Histopathology || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBPL/salmonella-challenge/ |title=''Salmonella'' infection data for Amfr |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MBPL/citrobacter-challenge/ |title=''Citrobacter'' infection data for Amfr |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages =  925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of AMFR function. A conditional [[knockout mouse]] line, called ''Amfr<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Amfr |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4362704 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{Cite journal
| last1 = Skarnes |first1 =W. C.
| doi = 10.1038/nature10163
| last2 = Rosen | first2 = B.
| last3 = West | first3 = A. P.
| last4 = Koutsourakis | first4 = M.
| last5 = Bushell | first5 = W.
| last6 = Iyer | first6 = V.
| last7 = Mujica | first7 = A. O.
| last8 = Thomas | first8 = M.
| last9 = Harrow | first9 = J.
| last10 = Cox | first10 = T.
| last11 = Jackson | first11 = D.
| last12 = Severin | first12 = J.
| last13 = Biggs | first13 = P.
| last14 = Fu | first14 = J.
| last15 = Nefedov | first15 = M.
| last16 = De Jong | first16 = P. J.
| last17 = Stewart | first17 = A. F.
| last18 = Bradley | first18 = A.
| title = A conditional knockout resource for the genome-wide study of mouse gene function
| journal = Nature
| volume = 474
| issue = 7351
| pages = 337–342
| year = 2011
| pmid = 21677750
| pmc =3572410
}}</ref><ref name="mouse_library">{{cite journal | doi = 10.1038/474262a | title = Mouse library set to be knockout | year = 2011 | author = Dolgin E | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | pmid = 21677718 }}</ref><ref name="mouse_for_all_reasons">{{cite journal | doi = 10.1016/j.cell.2006.12.018 | title = A Mouse for All Reasons | year = 2007 | journal = Cell | volume = 128 | pages = 9–13 | pmid = 17218247 |vauthors=Collins FS, Rossant J, Wurst W| issue = 1 }}</ref>
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal| vauthors=van der Weyden L, White JK, Adams DJ, Logan DW| title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224  | pmc=3218837}}</ref> Twenty six tests were carried out on [[mutant]] mice and one significant abnormality was observed: [[Mendelian ratio|Fewer than expected homozygous]] mutant mice survived until [[weaning]].<ref name="mgp_reference" />
==Interactions==
AMFR has been shown to [[Protein-protein interaction|interact]] with [[Valosin-containing protein]].<ref name=pmid15331598>{{cite journal |last=Zhong |first=Xiaoyan |author2=Shen Yuxian |author3=Ballar Petek |author4=Apostolou Andria |author5=Agami Reuven |author6=Fang Shengyun  |date=Oct 2004 |title=AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation |journal=J. Biol. Chem. |volume=279 |issue=44 |pages=45676–84 |publisher= |location = United States| issn = 0021-9258| pmid = 15331598 |doi = 10.1074/jbc.M409034200 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}</ref><ref name=pmid18835813>{{cite journal |last=Lee |first=Joon No |author2=Zhang Xiangyu |author3=Feramisco Jamison D |author4=Gong Yi |author5=Ye Jin  |date=Nov 2008 |title=Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step |journal=J. Biol. Chem. |volume=283 |issue=48 |pages=33772–83 |publisher= |location = United States| issn = 0021-9258| pmid = 18835813 |doi = 10.1074/jbc.M806108200 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = |pmc=2586246 }}</ref>


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==External links==
* {{UCSC gene info|AMFR}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Watanabe H, Carmi P, Hogan V, ''et al.'' |title=Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. |journal=J. Biol. Chem. |volume=266 |issue= 20 |pages= 13442-8 |year= 1991 |pmid= 1649192 |doi=  }}
*{{cite journal  | vauthors=Huang B, Xie Y, Raz A |title=Identification of an upstream region that controls the transcription of the human autocrine motility factor receptor. |journal=Biochem. Biophys. Res. Commun. |volume=212 |issue= 3 |pages= 727–42 |year= 1995 |pmid= 7626106 |doi=10.1006/bbrc.1995.2031 }}
*{{cite journal  | author=Huang B, Xie Y, Raz A |title=Identification of an upstream region that controls the transcription of the human autocrine motility factor receptor. |journal=Biochem. Biophys. Res. Commun. |volume=212 |issue= 3 |pages= 727-42 |year= 1995 |pmid= 7626106 |doi=  }}
*{{cite journal  | vauthors=Hillier LD, Lennon G, Becker M |title=Generation and analysis of 280,000 human expressed sequence tags. |journal=Genome Res. |volume=6 |issue= 9 |pages= 807–28 |year= 1997 |pmid= 8889549 |doi=10.1101/gr.6.9.807 |display-authors=etal}}
*{{cite journal  | author=Hillier LD, Lennon G, Becker M, ''et al.'' |title=Generation and analysis of 280,000 human expressed sequence tags. |journal=Genome Res. |volume=6 |issue= 9 |pages= 807-28 |year= 1997 |pmid= 8889549 |doi= }}
*{{cite journal  | vauthors=Shimizu K, Tani M, Watanabe H |title=The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. |journal=FEBS Lett. |volume=456 |issue= 2 |pages= 295–300 |year= 1999 |pmid= 10456327 |doi=10.1016/S0014-5793(99)00966-7  |display-authors=etal}}
*{{cite journal  | author=Shimizu K, Tani M, Watanabe H, ''et al.'' |title=The autocrine motility factor receptor gene encodes a novel type of seven transmembrane protein. |journal=FEBS Lett. |volume=456 |issue= 2 |pages= 295-300 |year= 1999 |pmid= 10456327 |doi= }}
*{{cite journal  | vauthors=Fang S, Ferrone M, Yang C |title=The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=98 |issue= 25 |pages= 14422–7 |year= 2002 |pmid= 11724934 |doi= 10.1073/pnas.251401598  | pmc=64697 |display-authors=etal}}
*{{cite journal  | author=Fang S, Ferrone M, Yang C, ''et al.'' |title=The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=98 |issue= 25 |pages= 14422-7 |year= 2002 |pmid= 11724934 |doi= 10.1073/pnas.251401598 }}
*{{cite journal  | vauthors=Luo Y, Long JM, Lu C |title=A link between maze learning and hippocampal expression of neuroleukin and its receptor gp78. |journal=J. Neurochem. |volume=80 |issue= 2 |pages= 354–61 |year= 2002 |pmid= 11902125 |doi=10.1046/j.0022-3042.2001.00707.x  |display-authors=etal}}
*{{cite journal  | author=Luo Y, Long JM, Lu C, ''et al.'' |title=A link between maze learning and hippocampal expression of neuroleukin and its receptor gp78. |journal=J. Neurochem. |volume=80 |issue= 2 |pages= 354-61 |year= 2002 |pmid= 11902125 |doi=  }}
*{{cite journal  | vauthors=Tímár J, Rásó E, Döme B |title=Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. |journal=Clin. Exp. Metastasis |volume=19 |issue= 3 |pages= 225–32 |year= 2002 |pmid= 12067203 |doi=10.1023/A:1015595708241 |display-authors=etal}}
*{{cite journal  | author=Tímár J, Rásó E, Döme B, ''et al.'' |title=Expression and function of the AMF receptor by human melanoma in experimental and clinical systems. |journal=Clin. Exp. Metastasis |volume=19 |issue= 3 |pages= 225-32 |year= 2002 |pmid= 12067203 |doi=  }}
*{{cite journal  | vauthors=Strausberg RL, Feingold EA, Grouse LH |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |display-authors=etal}}
*{{cite journal  | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | vauthors=Liang JS, Kim T, Fang S |title=Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. |journal=J. Biol. Chem. |volume=278 |issue= 26 |pages= 23984–8 |year= 2003 |pmid= 12670940 |doi= 10.1074/jbc.M302683200 |display-authors=etal}}
*{{cite journal  | author=Liang JS, Kim T, Fang S, ''et al.'' |title=Overexpression of the tumor autocrine motility factor receptor Gp78, a ubiquitin protein ligase, results in increased ubiquitinylation and decreased secretion of apolipoprotein B100 in HepG2 cells. |journal=J. Biol. Chem. |volume=278 |issue= 26 |pages= 23984-8 |year= 2003 |pmid= 12670940 |doi= 10.1074/jbc.M302683200 }}
*{{cite journal  | vauthors=Takanami I, Takeuchi K |title=Autocrine motility factor-receptor gene expression in lung cancer. |journal=Jpn. J. Thorac. Cardiovasc. Surg. |volume=51 |issue= 8 |pages= 368–73 |year= 2003 |pmid= 12962414 |doi=10.1007/BF02719469  }}
*{{cite journal  | author=Takanami I, Takeuchi K |title=Autocrine motility factor-receptor gene expression in lung cancer. |journal=Jpn. J. Thorac. Cardiovasc. Surg. |volume=51 |issue= 8 |pages= 368-73 |year= 2003 |pmid= 12962414 |doi= }}
*{{cite journal  | vauthors=Ota T, Suzuki Y, Nishikawa T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |display-authors=etal}}
*{{cite journal  | author=Ota T, Suzuki Y, Nishikawa T, ''et al.'' |title=Complete sequencing and characterization of 21,243 full-length human cDNAs. |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40-5 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 }}
*{{cite journal  | vauthors=Registre M, Goetz JG, St Pierre P |title=The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. |journal=Biochem. Biophys. Res. Commun. |volume=320 |issue= 4 |pages= 1316–22 |year= 2004 |pmid= 15303277 |doi=10.1016/j.bbrc.2004.06.089  |display-authors=etal}}
*{{cite journal  | author=Registre M, Goetz JG, St Pierre P, ''et al.'' |title=The gene product of the gp78/AMFR ubiquitin E3 ligase cDNA is selectively recognized by the 3F3A antibody within a subdomain of the endoplasmic reticulum. |journal=Biochem. Biophys. Res. Commun. |volume=320 |issue= 4 |pages= 1316-22 |year= 2004 |pmid= 15303277 |doi= }}
*{{cite journal  | vauthors=Zhong X, Shen Y, Ballar P |title=AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. |journal=J. Biol. Chem. |volume=279 |issue= 44 |pages= 45676–84 |year= 2004 |pmid= 15331598 |doi= 10.1074/jbc.M409034200 |display-authors=etal}}
*{{cite journal  | author=Zhong X, Shen Y, Ballar P, ''et al.'' |title=AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation. |journal=J. Biol. Chem. |volume=279 |issue= 44 |pages= 45676-84 |year= 2004 |pmid= 15331598 |doi= 10.1074/jbc.M409034200 }}
*{{cite journal  | vauthors=Gerhard DS, Wagner L, Feingold EA |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504  | pmc=528928 |display-authors=etal}}
*{{cite journal  | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | vauthors=Song BL, Sever N, DeBose-Boyd RA |title=Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. |journal=Mol. Cell |volume=19 |issue= 6 |pages= 829–40 |year= 2005 |pmid= 16168377 |doi= 10.1016/j.molcel.2005.08.009 }}
*{{cite journal  | author=Song BL, Sever N, DeBose-Boyd RA |title=Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. |journal=Mol. Cell |volume=19 |issue= 6 |pages= 829-40 |year= 2005 |pmid= 16168377 |doi= 10.1016/j.molcel.2005.08.009 }}
*{{cite journal  | vauthors=Kaynak K, Kara M, Oz B |title=Autocrine motility factor receptor expression implies an unfavourable prognosis in resected stage I pulmonary adenocarcinomas. |journal=Acta Chir. Belg. |volume=105 |issue= 4 |pages= 378–82 |year= 2006 |pmid= 16184720 |doi= |display-authors=etal}}
*{{cite journal  | author=Kaynak K, Kara M, Oz B, ''et al.'' |title=Autocrine motility factor receptor expression implies an unfavourable prognosis in resected stage I pulmonary adenocarcinomas. |journal=Acta Chir. Belg. |volume=105 |issue= 4 |pages= 378-82 |year= 2006 |pmid= 16184720 |doi=  }}
*{{cite journal  | vauthors=Ye Y, Shibata Y, Kikkert M |title=Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 40 |pages= 14132–8 |year= 2006 |pmid= 16186510 |doi= 10.1073/pnas.0505006102 | pmc=1242302 |display-authors=etal}}
*{{cite journal  | author=Ye Y, Shibata Y, Kikkert M, ''et al.'' |title=Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=102 |issue= 40 |pages= 14132-8 |year= 2006 |pmid= 16186510 |doi= 10.1073/pnas.0505006102 }}
*{{cite journal  | vauthors=Chen B, Mariano J, Tsai YC |title=The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 2 |pages= 341–6 |year= 2006 |pmid= 16407162 |doi= 10.1073/pnas.0506618103  | pmc=1326157 |display-authors=etal}}
*{{cite journal  | author=Chen B, Mariano J, Tsai YC, ''et al.'' |title=The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 2 |pages= 341-6 |year= 2006 |pmid= 16407162 |doi= 10.1073/pnas.0506618103 }}
*{{cite journal  | vauthors=Haga A, Tanaka N, Funasaka T |title=The autocrine motility factor (AMF) and AMF-receptor combination needs sugar chain recognition ability and interaction using the C-terminal region of AMF. |journal=J. Mol. Biol. |volume=358 |issue= 3 |pages= 741–53 |year= 2006 |pmid= 16563432 |doi= 10.1016/j.jmb.2006.02.046 |display-authors=etal}}
*{{cite journal  | author=Haga A, Tanaka N, Funasaka T, ''et al.'' |title=The autocrine motility factor (AMF) and AMF-receptor combination needs sugar chain recognition ability and interaction using the C-terminal region of AMF. |journal=J. Mol. Biol. |volume=358 |issue= 3 |pages= 741-53 |year= 2006 |pmid= 16563432 |doi= 10.1016/j.jmb.2006.02.046 }}
*{{cite journal  | vauthors=Shen Y, Ballar P, Fang S |title=Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin. |journal=Biochem. Biophys. Res. Commun. |volume=349 |issue= 4 |pages= 1285–93 |year= 2006 |pmid= 16979136 |doi= 10.1016/j.bbrc.2006.08.173 }}
*{{cite journal  | author=Shen Y, Ballar P, Fang S |title=Ubiquitin ligase gp78 increases solubility and facilitates degradation of the Z variant of alpha-1-antitrypsin. |journal=Biochem. Biophys. Res. Commun. |volume=349 |issue= 4 |pages= 1285-93 |year= 2006 |pmid= 16979136 |doi= 10.1016/j.bbrc.2006.08.173 }}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
[[Category:Genes mutated in mice]]

Revision as of 18:00, 29 August 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Autocrine motility factor receptor, isoform 2 is a protein that in humans is encoded by the AMFR gene.[1][2]

Autocrine motility factor is a tumor motility-stimulating protein secreted by tumor cells. The protein encoded by this gene is a glycosylated transmembrane protein and a receptor for autocrine motility factor. The receptor, which shows some sequence similarity to tumor protein p53, is localized to the leading and trailing edges of carcinoma cells.[2]

Model organisms

Model organisms have been used in the study of AMFR function. A conditional knockout mouse line, called Amfrtm1a(KOMP)Wtsi[7][8] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[9][10][11]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][12] Twenty six tests were carried out on mutant mice and one significant abnormality was observed: Fewer than expected homozygous mutant mice survived until weaning.[5]

Interactions

AMFR has been shown to interact with Valosin-containing protein.[13][14]

References

  1. Watanabe H, Carmi P, Hogan V, Raz T, Silletti S, Nabi IR, Raz A (Aug 1991). "Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor". J Biol Chem. 266 (20): 13442–8. PMID 1649192.
  2. 2.0 2.1 "Entrez Gene: AMFR autocrine motility factor receptor".
  3. "Salmonella infection data for Amfr". Wellcome Trust Sanger Institute.
  4. "Citrobacter infection data for Amfr". Wellcome Trust Sanger Institute.
  5. 5.0 5.1 5.2 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  6. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  7. "International Knockout Mouse Consortium".
  8. "Mouse Genome Informatics".
  9. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  12. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.
  13. Zhong, Xiaoyan; Shen Yuxian; Ballar Petek; Apostolou Andria; Agami Reuven; Fang Shengyun (Oct 2004). "AAA ATPase p97/valosin-containing protein interacts with gp78, a ubiquitin ligase for endoplasmic reticulum-associated degradation". J. Biol. Chem. United States. 279 (44): 45676–84. doi:10.1074/jbc.M409034200. ISSN 0021-9258. PMID 15331598.
  14. Lee, Joon No; Zhang Xiangyu; Feramisco Jamison D; Gong Yi; Ye Jin (Nov 2008). "Unsaturated fatty acids inhibit proteasomal degradation of Insig-1 at a postubiquitination step". J. Biol. Chem. United States. 283 (48): 33772–83. doi:10.1074/jbc.M806108200. ISSN 0021-9258. PMC 2586246. PMID 18835813.

External links

Further reading