ALOX12B: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS (v470) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Arachidonate 12-lipoxygenase, 12R type''', also known as '''ALOX12B''', '''12''R''-LOX''', and '''arachiconate lipoygenase 3''', is a [[lipoxygenase]]-type enzyme composed of 701 amino acids and encoded by the ''ALOX12B'' [[gene]].<ref name="entrez">{{Cite web| title = Entrez Gene: ALOX12B arachidonate 12-lipoxygenase, 12R type| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=242| accessdate = }}</ref><ref name="pmid9618483">{{cite journal | vauthors = Boeglin WE, Kim RB, Brash AR | title = A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 95 | issue = 12 | pages = 6744–9 | date = June 1998 | pmid = 9618483 | pmc = 22619 | doi = 10.1073/pnas.95.12.6744 | bibcode = 1998PNAS...95.6744B }}</ref><ref name="pmid9837935">{{cite journal | vauthors = Sun D, McDonnell M, Chen XS, Lakkis MM, Li H, Isaacs SN, Elsea SH, Patel PI, Funk CD | title = Human 12(R)-lipoxygenase and the mouse ortholog. Molecular cloning, expression, and gene chromosomal assignment | journal = The Journal of Biological Chemistry | volume = 273 | issue = 50 | pages = 33540–7 | date = December 1998 | pmid = 9837935 | doi = 10.1074/jbc.273.50.33540 }}</ref><ref>https://www.wikigenes.org/e/gene/e/242.html</ref> The gene is located on chromosome 17 at position 13.1 where it forms a cluster with two other lipoxygenases, [[ALOXE3]] and [[ALOX15B]].<ref name="Schneider_2002">{{cite journal | vauthors = Schneider C, Brash AR | title = Lipoxygenase-catalyzed formation of R-configuration hydroperoxides | journal = Prostaglandins & Other Lipid Mediators | volume = 68–69 | issue = | pages = 291–301 | date = August 2002 | pmid = 12432924 | doi = 10.1016/s0090-6980(02)00041-2 }}</ref> Among the human lipoxygenases, ALOX12B is most closely (54% identity) related in amino acid sequence to [[ALOXE3]]<ref>{{cite journal | vauthors = Klein A, Pappas SC, Gordon P, Wong A, Kellen J, Kolin A, Robinson JB, Malkin A | title = The effect of nonviral liver damage on the T-lymphocyte helper/suppressor ratio | journal = Clinical Immunology and Immunopathology | volume = 46 | issue = 2 | pages = 214–20 | date = February 1988 | pmid = 2962793 | doi = 10.1016/0090-1229(88)90184-5 }}</ref><ref name="ReferenceC">{{cite journal | vauthors = Bylund J, Kunz T, Valmsen K, Oliw EH | title = Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes | journal = The Journal of Pharmacology and Experimental Therapeutics | volume = 284 | issue = 1 | pages = 51–60 | date = January 1998 | pmid = 9435160 }}</ref><ref>{{cite journal | vauthors = Buczynski MW, Dumlao DS, Dennis EA | title = Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology | journal = Journal of Lipid Research | volume = 50 | issue = 6 | pages = 1015–38 | date = June 2009 | pmid = 19244215| pmc = 2681385 | doi = 10.1194/jlr.R900004-JLR200 }}</ref> | ||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
==Activity== | |||
ALOX12B oxygenates [[arachidonic acid]] by adding molecular oxygen (O<sub>2</sub>) in the form of a [[hydroperoxyl]] (HO<sub>2</sub>) residue to its 12th carbon thereby forming 12(''R'')-hydroperoxy-5''Z'',8''Z'',10''E'',14''Z''-icosatetraenoic acid (also termed 12(''R'')-HpETE or 12''R''-HpETE).<ref name="pmid9618483"/><ref name="pmid9837935"/> When formed in cells, 12''R''-HpETE may be quickly reduced to its [[hydroxyl]] analog (OH), 12(''R'')-hydroxy-5'''Z'',8''Z'',10''E'',14''Z''-eicosatetraenoic acid (also termed 12(''R'')-HETE or 12''R''-HETE), by ubiquitous [[peroxidase]]-type enzymes. These sequential metabolic reactions are: | |||
''' | |||
< | <center> | ||
arachidonic acid + O<sub>2</sub> <math>\rightleftharpoons</math> 12''R''-HpETE → 12''R''-HETE | |||
</center> | |||
12''R''-HETE stimulates animal and human [[neutrophil]] [[chemotaxis]] and other responses in vitro and is able to elicit inflammatory responses when injected into the skin of an animal model<ref name="pmid7803484">{{cite journal | vauthors = O'Flaherty JT, Cordes JF, Lee SL, Samuel M, Thomas MJ | title = Chemical and biological characterization of oxo-eicosatetraenoic acids | journal = Biochimica et Biophysica Acta | volume = 1201 | issue = 3 | pages = 505–15 | date = December 1994 | pmid = 7803484 | doi = 10.1016/0304-4165(94)90083-3 }}</ref><ref name="pmid7601505">{{cite journal | vauthors = Fretland DJ, Anglin CP, Bremer M, Isakson P, Widomski DL, Paulson SK, Docter SH, Djuric SW, Penning TD, Yu S | title = Antiinflammatory effects of second-generation leukotriene B4 receptor antagonist, SC-53228: impact upon leukotriene B4- and 12(R)-HETE-mediated events | journal = Inflammation | volume = 19 | issue = 2 | pages = 193–205 | date = April 1995 | pmid = 7601505 | doi = 10.1007/bf01534461 }}</ref> However, the production of 12''R''-HETE for this or other purposes may not be primary function of ALOX12B. | |||
{{protein- | ALOX12B is also capable of metabolizing free [[linoleic acid]] to 9(''R'')-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9''R''-HpODE) which is also rapidly converted to its hydroxyl derivative, 9-Hydroxyoctadecadienoic acid (9''R''-HODE).<ref name="pmid24021977">{{cite journal | vauthors = Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR | title = The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier | journal = Biochimica et Biophysica Acta | volume = 1841 | issue = 3 | pages = 401–8 | date = March 2014 | pmid = 24021977 | pmc = 4116325 | doi = 10.1016/j.bbalip.2013.08.020 }}</ref> | ||
{{ | |||
<center> | |||
Linoleic acid + O<sub>2</sub> <math>\rightleftharpoons</math> 9''R''-HpODE → 9''R''-HODE | |||
</center> | |||
The ''S'' [[stereoisomer]] of 9''R''-HODE, 9''S''-HODE, has a range of biological activities related to [[oxidative stress]] and pain perception (see [[9-Hydroxyoctadecadienoic acid]]. It is known or likely that 9''R''-HODE possesses at least some of these activities. For example, 9''R''-HODE, similar to 9''S''-HODE, mediates the perception of acute and chronic pain induced by heat, UV light, and inflammation in the skin of rodents (see [[9-Hydroxyoctadecadienoic acid#9-HODEs as mediators of pain perception]]). However, production of these LA metabolites does not appear to be the primary function of ALOX12B; ALOX12B's primary function appears to be to metabolize linoleic acid that is not free but rather esterified to certain {{citation needed|date=July 2017}} | |||
===Proposed principal activity of ALOX12B=== | |||
ALOX12B targets [[Linoleic acid]] (LA). LA is the most abundant fatty acid in the skin [[epidermis]], being present mainly [[esterified]] to the omega-[[hydroxyl]] residue of [[amide]]-linked omega-hydroxylated [[very long chain fatty acid]]s (VLCFAs) in a unique class of [[ceramide]]s termed esterified omega-hydroxyacyl-[[sphingosine]] (EOS). EOS is an intermediate component in a proposed multi-step metabolic pathway which delivers VLCFAs to the cornified lipid envelop in the skin's [[Stratum corneum]]; the presence of these [[wax]]-like, hydrophobic VLCFAs is needed to maintain the skin's integrity and functionality as a water barrier (see [[Lung microbiome#Role of the epithelial barrier]]).<ref name = "Krieg_2014"/> ALOX12B metabolizes the LA in EOS to its 9-hydroperoxy derivative; ALOXE3 then converts this derivative to three products: '''a)''' 9''R'',10''R''-trans-[[epoxide]],13''R''-hydroxy-10''E''-octadecenoic acid, '''b)''' 9-keto-10''E'',12''Z''-octadecadienoic acid, and '''c)''' 9''R'',10''R''-trans-epoxy-13-keto-11''E''-octadecenoic acid.<ref name = "Krieg_2014"/><ref name="Zheng_2011">{{cite journal | vauthors = Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR | title = Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope | journal = The Journal of Biological Chemistry | volume = 286 | issue = 27 | pages = 24046–56 | date = July 2011 | pmid = 21558561 | pmc = 3129186 | doi = 10.1074/jbc.M111.251496 }}</ref> These ALOX12B-oxidized products signal for the [[hydrolysis]] (i.e. removal) of the oxidized products from EOS; this allows the multi-step metabolic pathway to proceed in delivering the VLCFAs to the cornified lipid envelop in the skin's Stratum corneum.<ref name = "Krieg_2014"/><ref name="pmid25316652">{{cite journal | vauthors = Kuhn H, Banthiya S, van Leyen K | title = Mammalian lipoxygenases and their biological relevance | journal = Biochimica et Biophysica Acta | volume = 1851 | issue = 4 | pages = 308–30 | date = April 2015 | pmid = 25316652 | pmc = 4370320 | doi = 10.1016/j.bbalip.2014.10.002 }}</ref> | |||
==Tissue distribution== | |||
ALOX12B protein has been detected in humans that in the same tissues the express ALOXE3 and ALOX15B viz., upper layers of the human skin and tongue and in tonsils.<ref name="Schneider_2002"/> mRNA for it has been detected in additional tissues such as the lung, testis, adrenal gland, ovary, prostate, and skin with lower abundance levels detected in salivary and thyroid glands, pancreas, brain, and plasma blood leukocytes.<ref name="Schneider_2002"/> | |||
==Clinical significance== | |||
===Congenital ichthyosiform erythrodema=== | |||
Deletions of ''Alox12b'' or ''AloxE2'' genes in mice cause a congenital scaly skin disease which is characterized by a greatly reduced skin water barrier function and is similar in other ways to the [[autosomal recessive]] nonbullous [[Congenital ichthyosiform erythroderma]] (ARCI) disease of humans.<ref name="Zheng_2011"/> Mutations in many of the genes that encode proteins, including ALOX12B and ALOXE3, which conduct the steps that bring and then bind VLCFA to the stratums corneum are associated with ARCI.<ref name="pmid11773004">{{cite journal | vauthors = Jobard F, Lefèvre C, Karaduman A, Blanchet-Bardon C, Emre S, Weissenbach J, Ozgüc M, Lathrop M, Prud'homme JF, Fischer J | title = Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1 | journal = Human Molecular Genetics | volume = 11 | issue = 1 | pages = 107–13 | date = January 2002 | pmid = 11773004 | doi = 10.1093/hmg/11.1.107 }}</ref><ref name="pmid16116617">{{cite journal | vauthors = Eckl KM, Krieg P, Küster W, Traupe H, André F, Wittstruck N, Fürstenberger G, Hennies HC | title = Mutation spectrum and functional analysis of epidermis-type lipoxygenases in patients with autosomal recessive congenital ichthyosis | journal = Human Mutation | volume = 26 | issue = 4 | pages = 351–61 | date = October 2005 | pmid = 16116617 | doi = 10.1002/humu.20236 }}</ref> ARCI refers to nonsyndromic (i.e. not associated with other signs or symptoms) [[congenital]] [[Ichthyosis]] including [[Harlequin-type ichthyosis]], [[Lamellar ichthyosis]], and [[Congenital ichthyosiform erythroderma]].<ref name = "Krieg_2014">{{cite journal | vauthors = Krieg P, Fürstenberger G | title = The role of lipoxygenases in epidermis | journal = Biochimica et Biophysica Acta | volume = 1841 | issue = 3 | pages = 390–400 | date = March 2014 | pmid = 23954555 | doi = 10.1016/j.bbalip.2013.08.005 }}</ref> ARCI has an incidence of about 1/200,000 in European and North American populations; 40 different mutations in ''ALOX12B'' and 13 different mutations in ''ALOXE3'' genes account for a total of about 10% of ARCI case; these mutations uniformly cause a total loss of ALOX12B or ALOXE3 function (see [[mutations]]).<ref name = "Krieg_2014"/> | |||
===Proliferative skin diseases=== | |||
In [[psoriasis]] and other proliferative skin diseases such as the [[Erythroderma]]s underlying lung cancer, [[cutaneous T cell lymphoma]], and drug reactions, and in [[Discoid lupus]], [[Seborrheic dermatitis]], Subacute [[Cutaneous lupus erythematosus]], and [[Pemphigus foliaceus]], cutaneous levels of ALOX12B [[mRNA]] and 12''R''-HETE are greatly increased.<ref name="Schneider_2002"/><ref name="pmid7829882">{{cite journal | vauthors = Baer AN, Klaus MV, Green FA | title = Epidermal fatty acid oxygenases are activated in non-psoriatic dermatoses | journal = The Journal of Investigative Dermatology | volume = 104 | issue = 2 | pages = 251–5 | date = February 1995 | pmid = 7829882 | doi = 10.1111/1523-1747.ep12612793 }}</ref> It is not clear if these increases contribute to the disease by, for example, 12''R''-HETE induction of inflammation, or are primarily a consequence of skin proliferation.<ref name = "Krieg_2014"/> | |||
===Embryogenesis=== | |||
The expression of Alox12b and Aloxe3 [[mRNA]] in mice parallels, and is proposed to be instrumental for, skin development in mice [[embryogenesis]]; the human [[ortholog]]s of these genes, i.e. ALOX12B and ALOXE3, may have a similar role in humans.<ref name = "Krieg_2014"/> | |||
===Essential fatty acid deficiency=== | |||
Severe dietary deficiency of polyunsaturated [[omega 6 fatty acid]]s leads to the [[essential fatty acid deficiency]] syndrome that is characterized by scaly skin and excessive water loss; in humans and animal models the syndrome is fully reversed by dietary omega 6 fatty acids, particularly linoleic acid.<ref name="pmid25339684">{{cite journal | vauthors = Spector AA, Kim HY | title = Discovery of essential fatty acids | journal = Journal of Lipid Research | volume = 56 | issue = 1 | pages = 11–21 | date = January 2015 | pmid = 25339684 | pmc = 4274059 | doi = 10.1194/jlr.R055095 }}</ref> It is proposed that this deficiency disease resembles and has a similar basis to Congenital ichthyosiform erythrodema; that is, it is at least in part due to a deficiency of linoleic acid and thereby in the EOS-based delivery of VLCFA to the stratum corneum.<ref name = "Krieg_2014"/> | |||
== References == | |||
{{Reflist|33em}} | |||
==External links== | |||
* {{UCSC gene info|ALOX12B}} | |||
== Further reading == | |||
{{Refbegin|33em}} | |||
* {{cite journal | vauthors = Yu Z, Schneider C, Boeglin WE, Brash AR | title = Epidermal lipoxygenase products of the hepoxilin pathway selectively activate the nuclear receptor PPARalpha | journal = Lipids | volume = 42 | issue = 6 | pages = 491–7 | date = June 2007 | pmid = 17436029 | doi = 10.1007/s11745-007-3054-4 }} | |||
* {{cite journal | vauthors = Lesueur F, Bouadjar B, Lefèvre C, Jobard F, Audebert S, Lakhdar H, Martin L, Tadini G, Karaduman A, Emre S, Saker S, Lathrop M, Fischer J | title = Novel mutations in ALOX12B in patients with autosomal recessive congenital ichthyosis and evidence for genetic heterogeneity on chromosome 17p13 | journal = The Journal of Investigative Dermatology | volume = 127 | issue = 4 | pages = 829–34 | date = April 2007 | pmid = 17139268 | doi = 10.1038/sj.jid.5700640 }} | |||
* {{cite journal | vauthors = Yu Z, Schneider C, Boeglin WE, Brash AR | title = Mutations associated with a congenital form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3 | journal = Biochimica et Biophysica Acta | volume = 1686 | issue = 3 | pages = 238–47 | date = January 2005 | pmid = 15629692 | doi = 10.1016/j.bbalip.2004.10.007 }} | |||
* {{cite journal | vauthors = McDonnell M, Li H, Funk CD | title = Characterization of epidermal 12(S) and 12(R) lipoxygenases | journal = Advances in Experimental Medicine and Biology | volume = 507 | issue = | pages = 147–53 | year = 2003 | pmid = 12664578 | doi = 10.1007/978-1-4615-0193-0_23 | isbn = 978-1-4613-4960-0 | series = <!-- --> }} | |||
* {{cite journal | vauthors = Schneider C, Keeney DS, Boeglin WE, Brash AR | title = Detection and cellular localization of 12R-lipoxygenase in human tonsils | journal = Archives of Biochemistry and Biophysics | volume = 386 | issue = 2 | pages = 268–74 | date = February 2001 | pmid = 11368351 | doi = 10.1006/abbi.2000.2217 }} | |||
* {{cite journal | vauthors = Krieg P, Marks F, Fürstenberger G | title = A gene cluster encoding human epidermis-type lipoxygenases at chromosome 17p13.1: cloning, physical mapping, and expression | journal = Genomics | volume = 73 | issue = 3 | pages = 323–30 | date = May 2001 | pmid = 11350124 | doi = 10.1006/geno.2001.6519 }} | |||
* {{cite journal | vauthors = Tang K, Finley RL, Nie D, Honn KV | title = Identification of 12-lipoxygenase interaction with cellular proteins by yeast two-hybrid screening | journal = Biochemistry | volume = 39 | issue = 12 | pages = 3185–91 | date = March 2000 | pmid = 10727209 | doi = 10.1021/bi992664v }} | |||
* {{cite journal | vauthors = Boeglin WE, Kim RB, Brash AR | title = A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 95 | issue = 12 | pages = 6744–9 | date = June 1998 | pmid = 9618483 | pmc = 22619 | doi = 10.1073/pnas.95.12.6744 | bibcode = 1998PNAS...95.6744B }} | |||
{{Refend}} | |||
[[Category:Cell biology]] | |||
[[Category:Metabolic pathways]] | |||
[[Category:Fatty acids]] | |||
[[Category:Cutaneous conditions]] | |||
[[Category:Genodermatoses]] | |||
[[Category:Rare diseases]] | |||
[[Category:Autosomal recessive disorders]] |
Revision as of 03:12, 27 October 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Arachidonate 12-lipoxygenase, 12R type, also known as ALOX12B, 12R-LOX, and arachiconate lipoygenase 3, is a lipoxygenase-type enzyme composed of 701 amino acids and encoded by the ALOX12B gene.[1][2][3][4] The gene is located on chromosome 17 at position 13.1 where it forms a cluster with two other lipoxygenases, ALOXE3 and ALOX15B.[5] Among the human lipoxygenases, ALOX12B is most closely (54% identity) related in amino acid sequence to ALOXE3[6][7][8]
Activity
ALOX12B oxygenates arachidonic acid by adding molecular oxygen (O2) in the form of a hydroperoxyl (HO2) residue to its 12th carbon thereby forming 12(R)-hydroperoxy-5Z,8Z,10E,14Z-icosatetraenoic acid (also termed 12(R)-HpETE or 12R-HpETE).[2][3] When formed in cells, 12R-HpETE may be quickly reduced to its hydroxyl analog (OH), 12(R)-hydroxy-5'Z,8Z,10E,14Z-eicosatetraenoic acid (also termed 12(R)-HETE or 12R-HETE), by ubiquitous peroxidase-type enzymes. These sequential metabolic reactions are:
arachidonic acid + O2 <math>\rightleftharpoons</math> 12R-HpETE → 12R-HETE
12R-HETE stimulates animal and human neutrophil chemotaxis and other responses in vitro and is able to elicit inflammatory responses when injected into the skin of an animal model[9][10] However, the production of 12R-HETE for this or other purposes may not be primary function of ALOX12B.
ALOX12B is also capable of metabolizing free linoleic acid to 9(R)-hydroperoxy-10(E),12(Z)-octadecadienoic acid (9R-HpODE) which is also rapidly converted to its hydroxyl derivative, 9-Hydroxyoctadecadienoic acid (9R-HODE).[11]
Linoleic acid + O2 <math>\rightleftharpoons</math> 9R-HpODE → 9R-HODE
The S stereoisomer of 9R-HODE, 9S-HODE, has a range of biological activities related to oxidative stress and pain perception (see 9-Hydroxyoctadecadienoic acid. It is known or likely that 9R-HODE possesses at least some of these activities. For example, 9R-HODE, similar to 9S-HODE, mediates the perception of acute and chronic pain induced by heat, UV light, and inflammation in the skin of rodents (see 9-Hydroxyoctadecadienoic acid#9-HODEs as mediators of pain perception). However, production of these LA metabolites does not appear to be the primary function of ALOX12B; ALOX12B's primary function appears to be to metabolize linoleic acid that is not free but rather esterified to certain [citation needed]
Proposed principal activity of ALOX12B
ALOX12B targets Linoleic acid (LA). LA is the most abundant fatty acid in the skin epidermis, being present mainly esterified to the omega-hydroxyl residue of amide-linked omega-hydroxylated very long chain fatty acids (VLCFAs) in a unique class of ceramides termed esterified omega-hydroxyacyl-sphingosine (EOS). EOS is an intermediate component in a proposed multi-step metabolic pathway which delivers VLCFAs to the cornified lipid envelop in the skin's Stratum corneum; the presence of these wax-like, hydrophobic VLCFAs is needed to maintain the skin's integrity and functionality as a water barrier (see Lung microbiome#Role of the epithelial barrier).[12] ALOX12B metabolizes the LA in EOS to its 9-hydroperoxy derivative; ALOXE3 then converts this derivative to three products: a) 9R,10R-trans-epoxide,13R-hydroxy-10E-octadecenoic acid, b) 9-keto-10E,12Z-octadecadienoic acid, and c) 9R,10R-trans-epoxy-13-keto-11E-octadecenoic acid.[12][13] These ALOX12B-oxidized products signal for the hydrolysis (i.e. removal) of the oxidized products from EOS; this allows the multi-step metabolic pathway to proceed in delivering the VLCFAs to the cornified lipid envelop in the skin's Stratum corneum.[12][14]
Tissue distribution
ALOX12B protein has been detected in humans that in the same tissues the express ALOXE3 and ALOX15B viz., upper layers of the human skin and tongue and in tonsils.[5] mRNA for it has been detected in additional tissues such as the lung, testis, adrenal gland, ovary, prostate, and skin with lower abundance levels detected in salivary and thyroid glands, pancreas, brain, and plasma blood leukocytes.[5]
Clinical significance
Congenital ichthyosiform erythrodema
Deletions of Alox12b or AloxE2 genes in mice cause a congenital scaly skin disease which is characterized by a greatly reduced skin water barrier function and is similar in other ways to the autosomal recessive nonbullous Congenital ichthyosiform erythroderma (ARCI) disease of humans.[13] Mutations in many of the genes that encode proteins, including ALOX12B and ALOXE3, which conduct the steps that bring and then bind VLCFA to the stratums corneum are associated with ARCI.[15][16] ARCI refers to nonsyndromic (i.e. not associated with other signs or symptoms) congenital Ichthyosis including Harlequin-type ichthyosis, Lamellar ichthyosis, and Congenital ichthyosiform erythroderma.[12] ARCI has an incidence of about 1/200,000 in European and North American populations; 40 different mutations in ALOX12B and 13 different mutations in ALOXE3 genes account for a total of about 10% of ARCI case; these mutations uniformly cause a total loss of ALOX12B or ALOXE3 function (see mutations).[12]
Proliferative skin diseases
In psoriasis and other proliferative skin diseases such as the Erythrodermas underlying lung cancer, cutaneous T cell lymphoma, and drug reactions, and in Discoid lupus, Seborrheic dermatitis, Subacute Cutaneous lupus erythematosus, and Pemphigus foliaceus, cutaneous levels of ALOX12B mRNA and 12R-HETE are greatly increased.[5][17] It is not clear if these increases contribute to the disease by, for example, 12R-HETE induction of inflammation, or are primarily a consequence of skin proliferation.[12]
Embryogenesis
The expression of Alox12b and Aloxe3 mRNA in mice parallels, and is proposed to be instrumental for, skin development in mice embryogenesis; the human orthologs of these genes, i.e. ALOX12B and ALOXE3, may have a similar role in humans.[12]
Essential fatty acid deficiency
Severe dietary deficiency of polyunsaturated omega 6 fatty acids leads to the essential fatty acid deficiency syndrome that is characterized by scaly skin and excessive water loss; in humans and animal models the syndrome is fully reversed by dietary omega 6 fatty acids, particularly linoleic acid.[18] It is proposed that this deficiency disease resembles and has a similar basis to Congenital ichthyosiform erythrodema; that is, it is at least in part due to a deficiency of linoleic acid and thereby in the EOS-based delivery of VLCFA to the stratum corneum.[12]
References
- ↑ "Entrez Gene: ALOX12B arachidonate 12-lipoxygenase, 12R type".
- ↑ 2.0 2.1 Boeglin WE, Kim RB, Brash AR (June 1998). "A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression". Proceedings of the National Academy of Sciences of the United States of America. 95 (12): 6744–9. Bibcode:1998PNAS...95.6744B. doi:10.1073/pnas.95.12.6744. PMC 22619. PMID 9618483.
- ↑ 3.0 3.1 Sun D, McDonnell M, Chen XS, Lakkis MM, Li H, Isaacs SN, Elsea SH, Patel PI, Funk CD (December 1998). "Human 12(R)-lipoxygenase and the mouse ortholog. Molecular cloning, expression, and gene chromosomal assignment". The Journal of Biological Chemistry. 273 (50): 33540–7. doi:10.1074/jbc.273.50.33540. PMID 9837935.
- ↑ https://www.wikigenes.org/e/gene/e/242.html
- ↑ 5.0 5.1 5.2 5.3 Schneider C, Brash AR (August 2002). "Lipoxygenase-catalyzed formation of R-configuration hydroperoxides". Prostaglandins & Other Lipid Mediators. 68–69: 291–301. doi:10.1016/s0090-6980(02)00041-2. PMID 12432924.
- ↑ Klein A, Pappas SC, Gordon P, Wong A, Kellen J, Kolin A, Robinson JB, Malkin A (February 1988). "The effect of nonviral liver damage on the T-lymphocyte helper/suppressor ratio". Clinical Immunology and Immunopathology. 46 (2): 214–20. doi:10.1016/0090-1229(88)90184-5. PMID 2962793.
- ↑ Bylund J, Kunz T, Valmsen K, Oliw EH (January 1998). "Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes". The Journal of Pharmacology and Experimental Therapeutics. 284 (1): 51–60. PMID 9435160.
- ↑ Buczynski MW, Dumlao DS, Dennis EA (June 2009). "Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology". Journal of Lipid Research. 50 (6): 1015–38. doi:10.1194/jlr.R900004-JLR200. PMC 2681385. PMID 19244215.
- ↑ O'Flaherty JT, Cordes JF, Lee SL, Samuel M, Thomas MJ (December 1994). "Chemical and biological characterization of oxo-eicosatetraenoic acids". Biochimica et Biophysica Acta. 1201 (3): 505–15. doi:10.1016/0304-4165(94)90083-3. PMID 7803484.
- ↑ Fretland DJ, Anglin CP, Bremer M, Isakson P, Widomski DL, Paulson SK, Docter SH, Djuric SW, Penning TD, Yu S (April 1995). "Antiinflammatory effects of second-generation leukotriene B4 receptor antagonist, SC-53228: impact upon leukotriene B4- and 12(R)-HETE-mediated events". Inflammation. 19 (2): 193–205. doi:10.1007/bf01534461. PMID 7601505.
- ↑ Muñoz-Garcia A, Thomas CP, Keeney DS, Zheng Y, Brash AR (March 2014). "The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier". Biochimica et Biophysica Acta. 1841 (3): 401–8. doi:10.1016/j.bbalip.2013.08.020. PMC 4116325. PMID 24021977.
- ↑ 12.0 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Krieg P, Fürstenberger G (March 2014). "The role of lipoxygenases in epidermis". Biochimica et Biophysica Acta. 1841 (3): 390–400. doi:10.1016/j.bbalip.2013.08.005. PMID 23954555.
- ↑ 13.0 13.1 Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR (July 2011). "Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope". The Journal of Biological Chemistry. 286 (27): 24046–56. doi:10.1074/jbc.M111.251496. PMC 3129186. PMID 21558561.
- ↑ Kuhn H, Banthiya S, van Leyen K (April 2015). "Mammalian lipoxygenases and their biological relevance". Biochimica et Biophysica Acta. 1851 (4): 308–30. doi:10.1016/j.bbalip.2014.10.002. PMC 4370320. PMID 25316652.
- ↑ Jobard F, Lefèvre C, Karaduman A, Blanchet-Bardon C, Emre S, Weissenbach J, Ozgüc M, Lathrop M, Prud'homme JF, Fischer J (January 2002). "Lipoxygenase-3 (ALOXE3) and 12(R)-lipoxygenase (ALOX12B) are mutated in non-bullous congenital ichthyosiform erythroderma (NCIE) linked to chromosome 17p13.1". Human Molecular Genetics. 11 (1): 107–13. doi:10.1093/hmg/11.1.107. PMID 11773004.
- ↑ Eckl KM, Krieg P, Küster W, Traupe H, André F, Wittstruck N, Fürstenberger G, Hennies HC (October 2005). "Mutation spectrum and functional analysis of epidermis-type lipoxygenases in patients with autosomal recessive congenital ichthyosis". Human Mutation. 26 (4): 351–61. doi:10.1002/humu.20236. PMID 16116617.
- ↑ Baer AN, Klaus MV, Green FA (February 1995). "Epidermal fatty acid oxygenases are activated in non-psoriatic dermatoses". The Journal of Investigative Dermatology. 104 (2): 251–5. doi:10.1111/1523-1747.ep12612793. PMID 7829882.
- ↑ Spector AA, Kim HY (January 2015). "Discovery of essential fatty acids". Journal of Lipid Research. 56 (1): 11–21. doi:10.1194/jlr.R055095. PMC 4274059. PMID 25339684.
External links
- Human ALOX12B genome location and ALOX12B gene details page in the UCSC Genome Browser.
Further reading
- Yu Z, Schneider C, Boeglin WE, Brash AR (June 2007). "Epidermal lipoxygenase products of the hepoxilin pathway selectively activate the nuclear receptor PPARalpha". Lipids. 42 (6): 491–7. doi:10.1007/s11745-007-3054-4. PMID 17436029.
- Lesueur F, Bouadjar B, Lefèvre C, Jobard F, Audebert S, Lakhdar H, Martin L, Tadini G, Karaduman A, Emre S, Saker S, Lathrop M, Fischer J (April 2007). "Novel mutations in ALOX12B in patients with autosomal recessive congenital ichthyosis and evidence for genetic heterogeneity on chromosome 17p13". The Journal of Investigative Dermatology. 127 (4): 829–34. doi:10.1038/sj.jid.5700640. PMID 17139268.
- Yu Z, Schneider C, Boeglin WE, Brash AR (January 2005). "Mutations associated with a congenital form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3". Biochimica et Biophysica Acta. 1686 (3): 238–47. doi:10.1016/j.bbalip.2004.10.007. PMID 15629692.
- McDonnell M, Li H, Funk CD (2003). "Characterization of epidermal 12(S) and 12(R) lipoxygenases". Advances in Experimental Medicine and Biology. 507: 147–53. doi:10.1007/978-1-4615-0193-0_23. ISBN 978-1-4613-4960-0. PMID 12664578.
- Schneider C, Keeney DS, Boeglin WE, Brash AR (February 2001). "Detection and cellular localization of 12R-lipoxygenase in human tonsils". Archives of Biochemistry and Biophysics. 386 (2): 268–74. doi:10.1006/abbi.2000.2217. PMID 11368351.
- Krieg P, Marks F, Fürstenberger G (May 2001). "A gene cluster encoding human epidermis-type lipoxygenases at chromosome 17p13.1: cloning, physical mapping, and expression". Genomics. 73 (3): 323–30. doi:10.1006/geno.2001.6519. PMID 11350124.
- Tang K, Finley RL, Nie D, Honn KV (March 2000). "Identification of 12-lipoxygenase interaction with cellular proteins by yeast two-hybrid screening". Biochemistry. 39 (12): 3185–91. doi:10.1021/bi992664v. PMID 10727209.
- Boeglin WE, Kim RB, Brash AR (June 1998). "A 12R-lipoxygenase in human skin: mechanistic evidence, molecular cloning, and expression". Proceedings of the National Academy of Sciences of the United States of America. 95 (12): 6744–9. Bibcode:1998PNAS...95.6744B. doi:10.1073/pnas.95.12.6744. PMC 22619. PMID 9618483.