PPAN: Difference between revisions

Jump to navigation Jump to search
m (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
 
m (Bot: HTTP→HTTPS)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Suppressor of SWI4 1 homolog''' is a [[protein]] that in humans is encoded by the ''PPAN'' [[gene]].<ref name="pmid10873382">{{cite journal |vauthors=Welch PJ, Marcusson EG, Li QX, Beger C, Kruger M, Zhou C, Leavitt M, Wong-Staal F, Barber JR | title = Identification and validation of a gene involved in anchorage-independent cell growth control using a library of randomized hairpin ribozymes | journal = Genomics | volume = 66 | issue = 3 | pages = 274–83 |date=Sep 2000 | pmid = 10873382 | pmc =  | doi = 10.1006/geno.2000.6230 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: PPAN peter pan homolog (Drosophila)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56342| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image =
| image_source =
| PDB =
| Name = Peter pan homolog (Drosophila)
| HGNCid = 9227
| Symbol = PPAN
| AltSymbols =; BXDC3; MGC14226; MGC45852; SSF; SSF1; SSF2
| OMIM = 607793
| ECnumber =
| Homologene = 5690
| MGIid = 2178445
  | Function =  
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}}  
| Process = {{GNF_GO|id=GO:0008380 |text = RNA splicing}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 56342
    | Hs_Ensembl = 
    | Hs_RefseqProtein = NP_064615
    | Hs_RefseqmRNA = NM_020230
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 
    | Hs_GenLoc_start = 
    | Hs_GenLoc_end = 
    | Hs_Uniprot = 
    | Mm_EntrezGene = 235036
    | Mm_Ensembl = ENSMUSG00000004100
    | Mm_RefseqmRNA = NM_145610
    | Mm_RefseqProtein = NP_663585
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 9
    | Mm_GenLoc_start = 20638659
    | Mm_GenLoc_end = 20642580
    | Mm_Uniprot = Q8BYM4
  }}
}}
'''Peter pan homolog (Drosophila)''', also known as '''PPAN''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: PPAN peter pan homolog (Drosophila)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56342| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = The protein encoded by this gene is an evolutionarily conserved protein similar to yeast SSF1 as well as to the gene product of the Drosophila gene peter pan (ppan). SSF1 is known to be involved in the second step of mRNA splicing. Both SSF1 and ppan are essential for cell growth and proliferation. This gene was found to cotranscript with P2RY11/P2Y(11), an immediate downstream gene on the chromosome that encodes an ATP receptor. The chimeric transcripts of this gene and P2RY11 were found to be ubiquitously present and regulated during granulocytic differentiation. Exogenous expression of this gene was reported to reduce the anchorage-independent growth of some tumor cells.<ref name="entrez">{{cite web | title = Entrez Gene: PPAN peter pan homolog (Drosophila)| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56342| accessdate = }}</ref>
| summary_text = The protein encoded by this gene is an evolutionarily conserved protein similar to yeast SSF1 as well as to the gene product of the Drosophila gene peter pan (PPAN). SSF1 is known to be involved in the second step of mRNA splicing. Both SSF1 and PPAN are essential for cell growth and proliferation. This gene was found to cotranscript with P2RY11/P2Y(11), an immediate downstream gene on the chromosome that encodes an ATP receptor. The chimeric transcripts of this gene and P2RY11 were found to be ubiquitously present and regulated during granulocytic differentiation. Exogenous expression of this gene was reported to reduce the anchorage-independent growth of some tumor cells.<ref name="entrez">{{cite web | title = Entrez Gene: PPAN peter pan homolog (Drosophila)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=56342| accessdate = }}</ref>
}}
}}
One of the introns of PPAN encodes the [[Small nucleolar RNA SNORD105]].<ref>{{cite journal | last = Vitali | first = P |author2=Royo H |author3=Seitz H |author4=Bachellerie JP |author5=Huttenhofer A |author6=Cavaille J  | year = 2003 | title = Identification of 13 novel human modification guide RNAs | journal = Nucleic Acids Res. | volume = 31 | pages = 6543&ndash;6551 | pmid = 14602913 | doi = 10.1093/nar/gkg849 | issue = 22 | pmc = 275545}}</ref>


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Communi D, Govaerts C, Parmentier M, Boeynaems JM |title=Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. |journal=J. Biol. Chem. |volume=272 |issue= 51 |pages= 31969-73 |year= 1998 |pmid= 9405388 |doi=  }}
*{{cite journal  |vauthors=Communi D, Govaerts C, Parmentier M, Boeynaems JM |title=Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. |journal=J. Biol. Chem. |volume=272 |issue= 51 |pages= 31969–73 |year= 1998 |pmid= 9405388 |doi=10.1074/jbc.272.51.31969 }}
*{{cite journal  | author=Migeon JC, Garfinkel MS, Edgar BA |title=Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth. |journal=Mol. Biol. Cell |volume=10 |issue= 6 |pages= 1733-44 |year= 1999 |pmid= 10359593 |doi=  }}
*{{cite journal  |vauthors=Migeon JC, Garfinkel MS, Edgar BA |title=Cloning and characterization of peter pan, a novel Drosophila gene required for larval growth. |journal=Mol. Biol. Cell |volume=10 |issue= 6 |pages= 1733–44 |year= 1999 |pmid= 10359593 |doi=  10.1091/mbc.10.6.1733| pmc=25365  }}
*{{cite journal  | author=Welch PJ, Marcusson EG, Li QX, ''et al.'' |title=Identification and validation of a gene involved in anchorage-independent cell growth control using a library of randomized hairpin ribozymes. |journal=Genomics |volume=66 |issue= 3 |pages= 274-83 |year= 2000 |pmid= 10873382 |doi= 10.1006/geno.2000.6230 }}
*{{cite journal  |vauthors=Suarez-Huerta N, Boeynaems JM, Communi D |title=Cloning, genomic organization, and tissue distribution of human Ssf-1. |journal=Biochem. Biophys. Res. Commun. |volume=275 |issue= 1 |pages= 37–42 |year= 2000 |pmid= 10944437 |doi= 10.1006/bbrc.2000.3259 }}
*{{cite journal  | author=Suarez-Huerta N, Boeynaems JM, Communi D |title=Cloning, genomic organization, and tissue distribution of human Ssf-1. |journal=Biochem. Biophys. Res. Commun. |volume=275 |issue= 1 |pages= 37-42 |year= 2000 |pmid= 10944437 |doi= 10.1006/bbrc.2000.3259 }}
*{{cite journal   |vauthors=Communi D, Suarez-Huerta N, Dussossoy D, etal |title=Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. |journal=J. Biol. Chem. |volume=276 |issue= 19 |pages= 16561–6 |year= 2001 |pmid= 11278528 |doi= 10.1074/jbc.M009609200 }}
*{{cite journal | author=Communi D, Suarez-Huerta N, Dussossoy D, ''et al.'' |title=Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. |journal=J. Biol. Chem. |volume=276 |issue= 19 |pages= 16561-6 |year= 2001 |pmid= 11278528 |doi= 10.1074/jbc. M009609200 }}
*{{cite journal   |vauthors=Andersen JS, Lyon CE, Fox AH, etal |title=Directed proteomic analysis of the human nucleolus. |journal=Curr. Biol. |volume=12 |issue= 1 |pages= 1–11 |year= 2002 |pmid= 11790298 |doi=10.1016/S0960-9822(01)00650-9 }}
*{{cite journal | author=Andersen JS, Lyon CE, Fox AH, ''et al.'' |title=Directed proteomic analysis of the human nucleolus. |journal=Curr. Biol. |volume=12 |issue= 1 |pages= 1-11 |year= 2002 |pmid= 11790298 |doi=  }}
*{{cite journal   |vauthors=Duhant X, Schandené L, Bruyns C, etal |title=Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. |journal=J. Immunol. |volume=169 |issue= 1 |pages= 15–21 |year= 2002 |pmid= 12077223 |doi=  10.4049/jimmunol.169.1.15}}
*{{cite journal | author=Duhant X, Schandené L, Bruyns C, ''et al.'' |title=Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. |journal=J. Immunol. |volume=169 |issue= 1 |pages= 15-21 |year= 2002 |pmid= 12077223 |doi=  }}
*{{cite journal   |vauthors=Scherl A, Couté Y, Déon C, etal |title=Functional proteomic analysis of human nucleolus. |journal=Mol. Biol. Cell |volume=13 |issue= 11 |pages= 4100–9 |year= 2003 |pmid= 12429849 |doi= 10.1091/mbc.E02-05-0271 | pmc=133617 }}
*{{cite journal | author=Scherl A, Couté Y, Déon C, ''et al.'' |title=Functional proteomic analysis of human nucleolus. |journal=Mol. Biol. Cell |volume=13 |issue= 11 |pages= 4100-9 |year= 2003 |pmid= 12429849 |doi= 10.1091/mbc. E02-05-0271 }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Beausoleil SA, Jedrychowski M, Schwartz D, etal |title=Large-scale characterization of HeLa cell nuclear phosphoproteins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130–5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 | pmc=514446 }}
*{{cite journal | author=Beausoleil SA, Jedrychowski M, Schwartz D, ''et al.'' |title=Large-scale characterization of HeLa cell nuclear phosphoproteins. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=101 |issue= 33 |pages= 12130-5 |year= 2004 |pmid= 15302935 |doi= 10.1073/pnas.0404720101 }}
*{{cite journal   |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal   |vauthors=Nousiainen M, Silljé HH, Sauer G, etal |title=Phosphoproteome analysis of the human mitotic spindle. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 14 |pages= 5391–6 |year= 2006 |pmid= 16565220 |doi= 10.1073/pnas.0507066103 | pmc=1459365 }}
*{{cite journal | author=Nousiainen M, Silljé HH, Sauer G, ''et al.'' |title=Phosphoproteome analysis of the human mitotic spindle. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 14 |pages= 5391-6 |year= 2006 |pmid= 16565220 |doi= 10.1073/pnas.0507066103 }}
*{{cite journal   |vauthors=Beausoleil SA, Villén J, Gerber SA, etal |title=A probability-based approach for high-throughput protein phosphorylation analysis and site localization. |journal=Nat. Biotechnol. |volume=24 |issue= 10 |pages= 1285–92 |year= 2006 |pmid= 16964243 |doi= 10.1038/nbt1240 }}
*{{cite journal | author=Beausoleil SA, Villén J, Gerber SA, ''et al.'' |title=A probability-based approach for high-throughput protein phosphorylation analysis and site localization. |journal=Nat. Biotechnol. |volume=24 |issue= 10 |pages= 1285-92 |year= 2006 |pmid= 16964243 |doi= 10.1038/nbt1240 }}
*{{cite journal   |vauthors=Olsen JV, Blagoev B, Gnad F, etal |title=Global, ''in vivo'', and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 }}
*{{cite journal | author=Olsen JV, Blagoev B, Gnad F, ''et al.'' |title=Global, ''in vivo'', and site-specific phosphorylation dynamics in signaling networks. |journal=Cell |volume=127 |issue= 3 |pages= 635-48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 }}
*{{cite journal   |vauthors=Ewing RM, Chu P, Elisma F, etal |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue=  1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 }}
*{{cite journal | author=Ewing RM, Chu P, Elisma F, ''et al.'' |title=Large-scale mapping of human protein-protein interactions by mass spectrometry. |journal=Mol. Syst. Biol. |volume=3 |issue=  |pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 }}
}}
}}
{{refend}}
{{refend}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


{{protein-stub}}
{{protein-stub}}
{{WikiDoc Sources}}

Latest revision as of 18:30, 7 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Suppressor of SWI4 1 homolog is a protein that in humans is encoded by the PPAN gene.[1][2]

The protein encoded by this gene is an evolutionarily conserved protein similar to yeast SSF1 as well as to the gene product of the Drosophila gene peter pan (PPAN). SSF1 is known to be involved in the second step of mRNA splicing. Both SSF1 and PPAN are essential for cell growth and proliferation. This gene was found to cotranscript with P2RY11/P2Y(11), an immediate downstream gene on the chromosome that encodes an ATP receptor. The chimeric transcripts of this gene and P2RY11 were found to be ubiquitously present and regulated during granulocytic differentiation. Exogenous expression of this gene was reported to reduce the anchorage-independent growth of some tumor cells.[2]

One of the introns of PPAN encodes the Small nucleolar RNA SNORD105.[3]

References

  1. Welch PJ, Marcusson EG, Li QX, Beger C, Kruger M, Zhou C, Leavitt M, Wong-Staal F, Barber JR (Sep 2000). "Identification and validation of a gene involved in anchorage-independent cell growth control using a library of randomized hairpin ribozymes". Genomics. 66 (3): 274–83. doi:10.1006/geno.2000.6230. PMID 10873382.
  2. 2.0 2.1 "Entrez Gene: PPAN peter pan homolog (Drosophila)".
  3. Vitali, P; Royo H; Seitz H; Bachellerie JP; Huttenhofer A; Cavaille J (2003). "Identification of 13 novel human modification guide RNAs". Nucleic Acids Res. 31 (22): 6543&ndash, 6551. doi:10.1093/nar/gkg849. PMC 275545. PMID 14602913.

Further reading