PIP5K1C: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma''' is an [[enzyme]] that in humans is encoded by the ''PIP5K1C'' [[gene]].<ref name="pmid9535851">{{cite journal |vauthors=Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y | title = Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family | journal = J Biol Chem | volume = 273 | issue = 15 | pages = 8741–8 |date=May 1998 | pmid = 9535851 | pmc =  | doi =10.1074/jbc.273.15.8741 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, type I, gamma| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23396| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{GNF_Protein_box
| image = 
| image_source = 
| PDB =
| Name = Phosphatidylinositol-4-phosphate 5-kinase, type I, gamma
| HGNCid = 8996
| Symbol = PIP5K1C
| AltSymbols =; KIAA0589; PIP5K-GAMMA; PIP5Kgamma
| OMIM = 606102
| ECnumber = 
| Homologene = 69032
| MGIid = 1298224
| GeneAtlas_image1 = PBB_GE_PIP5K1C_212518_at_tn.png
| Function = {{GNF_GO|id=GO:0016301 |text = kinase activity}} {{GNF_GO|id=GO:0016308 |text = 1-phosphatidylinositol-4-phosphate 5-kinase activity}} {{GNF_GO|id=GO:0016740 |text = transferase activity}}
| Component = {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0007409 |text = axonogenesis}} {{GNF_GO|id=GO:0046488 |text = phosphatidylinositol metabolic process}}
  | Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 23396
    | Hs_Ensembl = ENSG00000186111
    | Hs_RefseqProtein = NP_036530
    | Hs_RefseqmRNA = NM_012398
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 19
    | Hs_GenLoc_start = 3581182
    | Hs_GenLoc_end = 3651445
    | Hs_Uniprot = O60331
    | Mm_EntrezGene = 18717
    | Mm_Ensembl = ENSMUSG00000034902
    | Mm_RefseqmRNA = XM_988009
    | Mm_RefseqProtein = XP_993103
    | Mm_GenLoc_db =   
    | Mm_GenLoc_chr = 10
    | Mm_GenLoc_start = 80696188
    | Mm_GenLoc_end = 80720532
    | Mm_Uniprot = O70161
  }}
}}
'''Phosphatidylinositol-4-phosphate 5-kinase, type I, gamma''', also known as '''PIP5K1C''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, type I, gamma| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23396| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
{{PBB_Summary
{{PBB_Summary
| section_title =  
| section_title =  
| summary_text = This gene encodes a member of the type I phosphatidylinositol-4-phosphate 5-kinase family of enzymes. A similar protein in mice is found in synapses and focal adhesion plaques, and binds the FERM domain of talin through its C-terminus.<ref name="entrez">{{cite web | title = Entrez Gene: PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, type I, gamma| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23396| accessdate = }}</ref>
| summary_text = This gene encodes a member of the type I phosphatidylinositol-4-phosphate 5-kinase family of enzymes. A similar protein in mice is found in synapses and focal adhesion plaques, and binds the [[FERM domain]] of talin through its C-terminus.<ref name="entrez"/>
}}
}}
==Model organisms==
{| class="wikitable sortable collapsible collapsed" border="1" cellpadding="2" style="float: right;" |
|+ ''Pip5k1c'' knockout mouse phenotype
|-
! Characteristic!! Phenotype
|-
| [[Homozygote]] viability || bgcolor="#C40000"|Abnormal
|-
| [[Recessive]] lethal study || bgcolor="#C40000"|Abnormal
|-
| Fertility || bgcolor="#488ED3"|Normal
|-
| Body weight || bgcolor="#488ED3"|Normal
|-
| [[Open Field (animal test)|Anxiety]] || bgcolor="#488ED3"|Normal
|-
| Neurological assessment || bgcolor="#488ED3"|Normal
|-
| Grip strength || bgcolor="#488ED3"|Normal
|-
| [[Hot plate test|Hot plate]] || bgcolor="#488ED3"|Normal
|-
| [[Dysmorphology]] || bgcolor="#488ED3"|Normal
|-
| [[Indirect calorimetry]] || bgcolor="#488ED3"|Normal
|-
| [[Glucose tolerance test]] || bgcolor="#488ED3"|Normal
|-
| [[Auditory brainstem response]] || bgcolor="#488ED3"|Normal
|-
| [[Dual-energy X-ray absorptiometry|DEXA]] || bgcolor="#488ED3"|Normal
|-
| [[Radiography]] || bgcolor="#488ED3"|Normal
|-
| Body temperature || bgcolor="#488ED3"|Normal
|-
| Eye morphology || bgcolor="#488ED3"|Normal
|-
| [[Clinical chemistry]] || bgcolor="#488ED3"|Normal
|-
| [[Haematology]] || bgcolor="#488ED3"|Normal
|-
| [[Peripheral blood lymphocyte]]s || bgcolor="#488ED3"|Normal
|-
| [[Micronucleus test]] || bgcolor="#488ED3"|Normal
|-
| Heart weight || bgcolor="#488ED3"|Normal
|-
| ''[[Salmonella]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Salmonella'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MCMC/salmonella-challenge/ |title=''Salmonella'' infection data for Pip5k1c |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| ''[[Citrobacter]]'' infection || bgcolor="#488ED3"|Normal<ref name="''Citrobacter'' infection">{{cite web |url=http://www.sanger.ac.uk/mouseportal/phenotyping/MCMC/citrobacter-challenge/ |title=''Citrobacter'' infection data for Pip5k1c |publisher=Wellcome Trust Sanger Institute}}</ref>
|-
| colspan=2; style="text-align: center;" | All tests and analysis from<ref name="mgp_reference">{{cite journal | doi = 10.1111/j.1755-3768.2010.4142.x | title = The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice | year = 2010 | author = Gerdin AK | journal = Acta Ophthalmologica | volume = 88 | pages =  925–7 }}</ref><ref>[http://www.sanger.ac.uk/mouseportal/ Mouse Resources Portal], Wellcome Trust Sanger Institute.</ref>
|}
[[Model organism]]s have been used in the study of PIP5K1C function. A conditional [[knockout mouse]] line, called ''Pip5k1c<sup>tm1a(KOMP)Wtsi</sup>''<ref name="allele_ref">{{cite web |url=http://www.knockoutmouse.org/martsearch/search?query=Pip5k1c |title=International Knockout Mouse Consortium}}</ref><ref name="mgi_allele_ref">{{cite web |url=http://www.informatics.jax.org/searchtool/Search.do?query=MGI:4362880 |title=Mouse Genome Informatics}}</ref> was generated as part of the [[International Knockout Mouse Consortium]] program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.<ref name="pmid21677750">{{Cite journal
| last1 = Skarnes |first1 =W. C.
| doi = 10.1038/nature10163
| last2 = Rosen | first2 = B.
| last3 = West | first3 = A. P.
| last4 = Koutsourakis | first4 = M.
| last5 = Bushell | first5 = W.
| last6 = Iyer | first6 = V.
| last7 = Mujica | first7 = A. O.
| last8 = Thomas | first8 = M.
| last9 = Harrow | first9 = J.
| last10 = Cox | first10 = T.
| last11 = Jackson | first11 = D.
| last12 = Severin | first12 = J.
| last13 = Biggs | first13 = P.
| last14 = Fu | first14 = J.
| last15 = Nefedov | first15 = M.
| last16 = De Jong | first16 = P. J.
| last17 = Stewart | first17 = A. F.
| last18 = Bradley | first18 = A.
| title = A conditional knockout resource for the genome-wide study of mouse gene function
| journal = Nature
| volume = 474
| issue = 7351
| pages = 337–342
| year = 2011
| pmid = 21677750
| pmc =3572410
}}</ref><ref name="mouse_library">{{cite journal | doi = 10.1038/474262a | title = Mouse library set to be knockout | year = 2011 | author = Dolgin E | journal = Nature | volume = 474 | issue = 7351 | pages = 262–3 | pmid = 21677718 }}</ref><ref name="mouse_for_all_reasons">{{cite journal | doi = 10.1016/j.cell.2006.12.018 | title = A Mouse for All Reasons | year = 2007 | journal = Cell | volume = 128 | pages = 9–13 | pmid = 17218247 |vauthors=Collins FS, Rossant J, Wurst W | issue = 1 }}</ref>
Male and female animals underwent a standardized [[phenotypic screen]] to determine the effects of deletion.<ref name="mgp_reference" /><ref name="pmid21722353">{{cite journal|vauthors=van der Weyden L, White JK, Adams DJ, Logan DW | title=The mouse genetics toolkit: revealing function and mechanism. | journal=Genome Biol | year= 2011 | volume= 12 | issue= 6 | pages= 224 | pmid=21722353 | doi=10.1186/gb-2011-12-6-224  | pmc=3218837}}</ref> Twenty three tests were carried out on [[mutant]] mice and two significant abnormalities were observed.<ref name="mgp_reference" /> Fewer than expected [[homozygous]] mutant embryos were identified during gestation, and none survived until [[weaning]]. The remaining tests were carried out on [[heterozygous]] mutant adult mice and no further phenotypes were observed.<ref name="mgp_reference" />


==References==
==References==
{{reflist|2}}
{{reflist}}
 
==Further reading==
==Further reading==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading  
{{PBB_Further_reading  
| citations =  
| citations =  
*{{cite journal  | author=Niiro H, Clark EA |title=Branches of the B cell antigen receptor pathway are directed by protein conduits Bam32 and Carma1. |journal=Immunity |volume=19 |issue= 5 |pages= 637-40 |year= 2003 |pmid= 14614850 |doi=  }}
*{{cite journal  |vauthors=Niiro H, Clark EA |title=Branches of the B cell antigen receptor pathway are directed by protein conduits Bam32 and Carma1. |journal=Immunity |volume=19 |issue= 5 |pages= 637–40 |year= 2003 |pmid= 14614850 |doi=10.1016/S1074-7613(03)00303-0 }}
*{{cite journal  | author=Carpenter CL |title=Btk-dependent regulation of phosphoinositide synthesis. |journal=Biochem. Soc. Trans. |volume=32 |issue= Pt 2 |pages= 326-9 |year= 2004 |pmid= 15046600 |doi= 10.1042/ }}
*{{cite journal  | author=Carpenter CL |title=Btk-dependent regulation of phosphoinositide synthesis. |journal=Biochem. Soc. Trans. |volume=32 |issue= Pt 2 |pages= 326–9 |year= 2004 |pmid= 15046600 |doi=10.1042/BST0320326 }}
*{{cite journal  | author=Ishihara H, Shibasaki Y, Kizuki N, ''et al.'' |title=Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. |journal=J. Biol. Chem. |volume=273 |issue= 15 |pages= 8741-8 |year= 1998 |pmid= 9535851 |doi= }}
*{{cite journal   |vauthors=Nagase T, Ishikawa K, Miyajima N, etal |title=Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. |journal=DNA Res. |volume=5 |issue= 1 |pages= 31–9 |year= 1998 |pmid= 9628581 |doi=10.1093/dnares/5.1.31 }}
*{{cite journal | author=Nagase T, Ishikawa K, Miyajima N, ''et al.'' |title=Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. |journal=DNA Res. |volume=5 |issue= 1 |pages= 31-9 |year= 1998 |pmid= 9628581 |doi=  }}
*{{cite journal   |vauthors=Gotthardt M, Trommsdorff M, Nevitt MF, etal |title=Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. |journal=J. Biol. Chem. |volume=275 |issue= 33 |pages= 25616–24 |year= 2000 |pmid= 10827173 |doi= 10.1074/jbc.M000955200 }}
*{{cite journal | author=Gotthardt M, Trommsdorff M, Nevitt MF, ''et al.'' |title=Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. |journal=J. Biol. Chem. |volume=275 |issue= 33 |pages= 25616-24 |year= 2000 |pmid= 10827173 |doi= 10.1074/jbc.M000955200 }}
*{{cite journal   |vauthors=Wenk MR, Pellegrini L, Klenchin VA, etal |title=PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. |journal=Neuron |volume=32 |issue= 1 |pages= 79–88 |year= 2001 |pmid= 11604140 |doi=10.1016/S0896-6273(01)00456-1 }}
*{{cite journal | author=Wenk MR, Pellegrini L, Klenchin VA, ''et al.'' |title=PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse. |journal=Neuron |volume=32 |issue= 1 |pages= 79-88 |year= 2001 |pmid= 11604140 |doi=  }}
*{{cite journal   |vauthors=Di Paolo G, Pellegrini L, Letinic K, etal |title=Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. |journal=Nature |volume=420 |issue= 6911 |pages= 85–9 |year= 2002 |pmid= 12422219 |doi= 10.1038/nature01147 }}
*{{cite journal | author=Di Paolo G, Pellegrini L, Letinic K, ''et al.'' |title=Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin. |journal=Nature |volume=420 |issue= 6911 |pages= 85-9 |year= 2002 |pmid= 12422219 |doi= 10.1038/nature01147 }}
*{{cite journal   |vauthors=Ling K, Doughman RL, Firestone AJ, etal |title=Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. |journal=Nature |volume=420 |issue= 6911 |pages= 89–93 |year= 2002 |pmid= 12422220 |doi= 10.1038/nature01082 }}
*{{cite journal | author=Ling K, Doughman RL, Firestone AJ, ''et al.'' |title=Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. |journal=Nature |volume=420 |issue= 6911 |pages= 89-93 |year= 2002 |pmid= 12422220 |doi= 10.1038/nature01082 }}
*{{cite journal   |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal   |vauthors=Doughman RL, Firestone AJ, Wojtasiak ML, etal |title=Membrane ruffling requires coordination between type Ialpha phosphatidylinositol phosphate kinase and Rac signaling. |journal=J. Biol. Chem. |volume=278 |issue= 25 |pages= 23036–45 |year= 2003 |pmid= 12682053 |doi= 10.1074/jbc.M211397200 }}
*{{cite journal | author=Doughman RL, Firestone AJ, Wojtasiak ML, ''et al.'' |title=Membrane ruffling requires coordination between type Ialpha phosphatidylinositol phosphate kinase and Rac signaling. |journal=J. Biol. Chem. |volume=278 |issue= 25 |pages= 23036-45 |year= 2003 |pmid= 12682053 |doi= 10.1074/jbc.M211397200 }}
*{{cite journal   |vauthors=Krauss M, Kinuta M, Wenk MR, etal |title=ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. |journal=J. Cell Biol. |volume=162 |issue= 1 |pages= 113–24 |year= 2003 |pmid= 12847086 |doi= 10.1083/jcb.200301006 | pmc=2172713 }}
*{{cite journal | author=Krauss M, Kinuta M, Wenk MR, ''et al.'' |title=ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. |journal=J. Cell Biol. |volume=162 |issue= 1 |pages= 113-24 |year= 2003 |pmid= 12847086 |doi= 10.1083/jcb.200301006 }}
*{{cite journal   |vauthors=Chang JD, Field SJ, Rameh LE, etal |title=Identification and characterization of a phosphoinositide phosphate kinase homolog. |journal=J. Biol. Chem. |volume=279 |issue= 12 |pages= 11672–9 |year= 2004 |pmid= 14701839 |doi= 10.1074/jbc.M309721200 }}
*{{cite journal | author=Chang JD, Field SJ, Rameh LE, ''et al.'' |title=Identification and characterization of a phosphoinositide phosphate kinase homolog. |journal=J. Biol. Chem. |volume=279 |issue= 12 |pages= 11672-9 |year= 2004 |pmid= 14701839 |doi= 10.1074/jbc.M309721200 }}
*{{cite journal   |vauthors=Grimwood J, Gordon LA, Olsen A, etal |title=The DNA sequence and biology of human chromosome 19. |journal=Nature |volume=428 |issue= 6982 |pages= 529–35 |year= 2004 |pmid= 15057824 |doi= 10.1038/nature02399 }}
*{{cite journal | author=Grimwood J, Gordon LA, Olsen A, ''et al.'' |title=The DNA sequence and biology of human chromosome 19. |journal=Nature |volume=428 |issue= 6982 |pages= 529-35 |year= 2004 |pmid= 15057824 |doi= 10.1038/nature02399 }}
*{{cite journal   |vauthors=Wang YJ, Li WH, Wang J, etal |title=Critical role of PIP5KI{gamma}87 in InsP3-mediated Ca(2+) signaling. |journal=J. Cell Biol. |volume=167 |issue= 6 |pages= 1005–10 |year= 2005 |pmid= 15611330 |doi= 10.1083/jcb.200408008 |pmc=2172614}}
*{{cite journal | author=Wang YJ, Li WH, Wang J, ''et al.'' |title=Critical role of PIP5KI{gamma}87 in InsP3-mediated Ca(2+) signaling. |journal=J. Cell Biol. |volume=167 |issue= 6 |pages= 1005-10 |year= 2005 |pmid= 15611330 |doi= 10.1083/jcb.200408008 }}
*{{cite journal   |vauthors=Bairstow SF, Ling K, Su X, etal |title=Type Igamma661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis. |journal=J. Biol. Chem. |volume=281 |issue= 29 |pages= 20632–42 |year= 2006 |pmid= 16707488 |doi= 10.1074/jbc.M601465200 }}
*{{cite journal | author=Bairstow SF, Ling K, Su X, ''et al.'' |title=Type Igamma661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis. |journal=J. Biol. Chem. |volume=281 |issue= 29 |pages= 20632-42 |year= 2006 |pmid= 16707488 |doi= 10.1074/jbc.M601465200 }}
*{{cite journal  |vauthors=Krauss M, Kukhtina V, Pechstein A, Haucke V |title=Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 32 |pages= 11934–9 |year= 2006 |pmid= 16880396 |doi= 10.1073/pnas.0510306103 | pmc=1567676 }}
*{{cite journal  | author=Krauss M, Kukhtina V, Pechstein A, Haucke V |title=Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=103 |issue= 32 |pages= 11934-9 |year= 2006 |pmid= 16880396 |doi= 10.1073/pnas.0510306103 }}
*{{cite journal  |vauthors=Auvinen E, Kivi N, Vaheri A |title=Regulation of ezrin localization by Rac1 and PIPK in human epithelial cells. |journal=Exp. Cell Res. |volume=313 |issue= 4 |pages= 824–33 |year= 2007 |pmid= 17229424 |doi= 10.1016/j.yexcr.2006.12.002 }}
*{{cite journal  | author=Auvinen E, Kivi N, Vaheri A |title=Regulation of ezrin localization by Rac1 and PIPK in human epithelial cells. |journal=Exp. Cell Res. |volume=313 |issue= 4 |pages= 824-33 |year= 2007 |pmid= 17229424 |doi= 10.1016/j.yexcr.2006.12.002 }}
*{{cite journal   |vauthors=Ling K, Bairstow SF, Carbonara C, etal |title=Type Igamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. |journal=J. Cell Biol. |volume=176 |issue= 3 |pages= 343–53 |year= 2007 |pmid= 17261850 |doi= 10.1083/jcb.200606023 | pmc=2063960 }}
*{{cite journal | author=Ling K, Bairstow SF, Carbonara C, ''et al.'' |title=Type Igamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. |journal=J. Cell Biol. |volume=176 |issue= 3 |pages= 343-53 |year= 2007 |pmid= 17261850 |doi= 10.1083/jcb.200606023 }}
}}
}}
{{refend}}
{{refend}}


{{protein-stub}}
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{WikiDoc Sources}}
{{PBB_Controls
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}
 
[[Category:Genes mutated in mice]]

Latest revision as of 18:10, 7 September 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Phosphatidylinositol-4-phosphate 5-kinase type-1 gamma is an enzyme that in humans is encoded by the PIP5K1C gene.[1][2]

This gene encodes a member of the type I phosphatidylinositol-4-phosphate 5-kinase family of enzymes. A similar protein in mice is found in synapses and focal adhesion plaques, and binds the FERM domain of talin through its C-terminus.[2]

Model organisms

Model organisms have been used in the study of PIP5K1C function. A conditional knockout mouse line, called Pip5k1ctm1a(KOMP)Wtsi[7][8] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[9][10][11]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[5][12] Twenty three tests were carried out on mutant mice and two significant abnormalities were observed.[5] Fewer than expected homozygous mutant embryos were identified during gestation, and none survived until weaning. The remaining tests were carried out on heterozygous mutant adult mice and no further phenotypes were observed.[5]

References

  1. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y (May 1998). "Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family". J Biol Chem. 273 (15): 8741–8. doi:10.1074/jbc.273.15.8741. PMID 9535851.
  2. 2.0 2.1 "Entrez Gene: PIP5K1C phosphatidylinositol-4-phosphate 5-kinase, type I, gamma".
  3. "Salmonella infection data for Pip5k1c". Wellcome Trust Sanger Institute.
  4. "Citrobacter infection data for Pip5k1c". Wellcome Trust Sanger Institute.
  5. 5.0 5.1 5.2 5.3 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x.
  6. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  7. "International Knockout Mouse Consortium".
  8. "Mouse Genome Informatics".
  9. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  10. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  11. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247.
  12. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading