TAF4: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +)
 
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Transcription initiation factor TFIID subunit 4''' is a [[protein]] that in humans is encoded by the ''TAF4'' [[gene]].<ref name="pmid8942982">{{cite journal | vauthors = Tanese N, Saluja D, Vassallo MF, Chen JL, Admon A | title = Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100 | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 93 | issue = 24 | pages = 13611–6 | year = 1996 | date = January 1997 | pmid = 8942982 | pmc = 19367 | doi = 10.1073/pnas.93.24.13611 }}</ref><ref name="pmid9192867">{{cite journal | vauthors = Mengus G, May M, Carré L, Chambon P, Davidson I | title = Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells | journal = Genes Dev. | volume = 11 | issue = 11 | pages = 1381–95  | date = July 1997 | pmid = 9192867 | pmc =  | doi = 10.1101/gad.11.11.1381 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: TAF4 TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6874| accessdate = }}</ref>
| update_page = yes
 
| require_manual_inspection = no
== Function ==
| update_protein_box = yes
 
| update_summary = yes
Initiation of transcription by [[RNA polymerase II]] requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID ([[TFIID]]), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the [[TATA binding protein|TATA-binding protein (TBP)]] and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the larger subunits of TFIID that has been shown to potentiate transcriptional activation by retinoic acid, thyroid hormone and vitamin D<sub>3</sub> receptors. In addition, this subunit interacts with the transcription factor CREB, which has a glutamine-rich activation domain, and binds to other proteins containing glutamine-rich regions. Aberrant binding to this subunit by proteins with expanded [[polyglutamine tract|polyglutamine regions]] has been suggested as one of the pathogenetic mechanisms underlying a group of neurodegenerative disorders referred to as polyglutamine diseases.<ref name="entrez" />
| update_citations = yes
 
}}
== Interactions ==


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
TAF4 has been shown to [[Protein-protein interaction|interact]] with:
{{GNF_Protein_box
* [[CBX5 (gene)|CBX5]]m<ref name = pmid11959914>{{cite journal | vauthors = Vassallo MF, Tanese N | title = Isoform-specific interaction of HP1 with human TAFII130 | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 99 | issue = 9 | pages = 5919–24 | date = April 2002 | pmid = 11959914 | pmc = 122877 | doi = 10.1073/pnas.092025499 }}</ref>
| image = PBB_Protein_TAF4_image.jpg
* [[TATA binding protein]],<ref name = pmid12665565>{{cite journal | vauthors = Pointud JC, Mengus G, Brancorsini S, Monaco L, Parvinen M, Sassone-Corsi P, Davidson I | title = The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation | journal = J. Cell Sci. | volume = 116 | issue = Pt 9 | pages = 1847–58 | date = May 2003 | pmid = 12665565 | doi = 10.1242/jcs.00391}}</ref><ref name = pmid9153318>{{cite journal | vauthors = Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L, Mantovani R | title = CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues | journal = Nucleic Acids Res. | volume = 25 | issue = 11 | pages = 2174–81 | date = June 1997 | pmid = 9153318 | pmc = 146709 | doi 10.1093/nar/25.11.2174}}</ref>  and
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1h3o.
* [[Transcription initiation protein SPT3 homolog]].<ref name = pmid11406595>{{cite journal | vauthors = Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L | title = UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation | journal = EMBO J. | volume = 20 | issue = 12 | pages = 3187–96  | date = June 2001 | pmid = 11406595 | pmc = 150203 | doi = 10.1093/emboj/20.12.3187 }}</ref>
| PDB = {{PDB2|1h3o}}, {{PDB2|2p6v}}
| Name = TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa
| HGNCid = 11537
| Symbol = TAF4
| AltSymbols =; FLJ41943; TAF2C; TAF2C1; TAF4A; TAFII130; TAFII135
| OMIM = 601796
  | ECnumber =
| Homologene = 55723
| MGIid = 2152346
| GeneAtlas_image1 = PBB_GE_TAF4_213090_s_at_tn.png
| GeneAtlas_image2 = PBB_GE_TAF4_208545_x_at_tn.png
| Function = {{GNF_GO|id=GO:0003700 |text = transcription factor activity}} {{GNF_GO|id=GO:0003713 |text = transcription coactivator activity}} {{GNF_GO|id=GO:0005515 |text = protein binding}} {{GNF_GO|id=GO:0016251 |text = general RNA polymerase II transcription factor activity}} {{GNF_GO|id=GO:0016986 |text = transcription initiation factor activity}}
| Component = {{GNF_GO|id=GO:0005634 |text = nucleus}} {{GNF_GO|id=GO:0005669 |text = transcription factor TFIID complex}}
  | Process = {{GNF_GO|id=GO:0001541 |text = ovarian follicle development}} {{GNF_GO|id=GO:0006350 |text = transcription}} {{GNF_GO|id=GO:0006352 |text = transcription initiation}} {{GNF_GO|id=GO:0006355 |text = regulation of transcription, DNA-dependent}} {{GNF_GO|id=GO:0006357 |text = regulation of transcription from RNA polymerase II promoter}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 6874
    | Hs_Ensembl = ENSG00000130699
    | Hs_RefseqProtein = NP_003176
    | Hs_RefseqmRNA = NM_003185
    | Hs_GenLoc_db =   
    | Hs_GenLoc_chr = 20
    | Hs_GenLoc_start = 59983247
    | Hs_GenLoc_end = 60074261
    | Hs_Uniprot = O00268
    | Mm_EntrezGene = 228980
    | Mm_Ensembl = ENSMUSG00000039117
    | Mm_RefseqmRNA = XM_130764
    | Mm_RefseqProtein = XP_130764
    | Mm_GenLoc_db =   
    | Mm_GenLoc_chr = 2
    | Mm_GenLoc_start = 179842634
    | Mm_GenLoc_end = 179904910
    | Mm_Uniprot = 
  }}
}}
'''TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa''', also known as '''TAF4''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: TAF4 TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6874| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
==Protein domain==
{{PBB_Summary
{{Infobox protein family
| section_title =  
| Symbol = TAF4
| summary_text = Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the larger subunits of TFIID that has been shown to potentiate transcriptional activation by retinoic acid, thyroid hormone and vitamin D3 receptors. In addition, this subunit interacts with the transcription factor CREB, which has a glutamine-rich activation domain, and binds to other proteins containing glutamine-rich regions. Aberrant binding to this subunit by proteins with expanded polyglutamine regions has been suggested as one of the pathogenetic mechanisms underlying a group of neurodegenerative disorders referred to as polyglutamine diseases.<ref name="entrez">{{cite web | title = Entrez Gene: TAF4 TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=6874| accessdate = }}</ref>
| Name = TAF4
| image = PDB 1h3o EBI.jpg
| width =
| caption = crystal structure of the human taf4-taf12 (tafii135-tafii20) complex
| Pfam = PF05236
| Pfam_clan = 
| InterPro = IPR007900
| SMART =
| PROSITE =
| MEROPS =  
| SCOP = 1h3o
| TCDB =  
| OPM family =  
| OPM protein =  
| CAZy =  
| CDD =  
}}
}}
[[Saccharomyces cerevisiae|Yeast]] TFIID comprises the TATA [[Binding (molecular)|binding]] [[protein]] and 14 TBP-associated factors (TAFIIs), nine of which contain histone-fold [[protein domain|domains]] ([http://www.ebi.ac.uk/interpro/IEntry?ac=IPR007124 INTERPRO]). The [[C-terminal]] region of the TFIID-specific [[yeast]] TAF4 (yTAF4) containing the HFD shares strong [[sequence (biology)|sequence]] similarity with [[Drosophila]] (d)TAF4 and [[Homo sapiens|human]] TAF4. A structure/function analysis of yTAF4 demonstrates that the HFD, a short [[conserved sequence|conserved]] C-terminal [[Domain (biology)|domain]] (CCTD), and the region separating them are all required for yTAF4 function. This region of similarity is found in [[Transcription (genetics)|Transcription]] [[Eukaryotic initiation factor|initiation factor]] TFIID component TAF4.<ref name="pmid12237303">{{cite journal | vauthors = Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I | title = Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain | journal = J. Biol. Chem. | volume = 277 | issue = 47 | pages = 45510–7  | date = November 2002 | pmid = 12237303 | doi = 10.1074/jbc.M206556200 }}</ref>


==References==
== References ==
{{reflist|2}}
{{Reflist}}
==Further reading==
{{refbegin | 2}}
{{PBB_Further_reading
| citations =
*{{cite journal  | author=Zhou Q, Sharp PA |title=Novel mechanism and factor for regulation by HIV-1 Tat. |journal=EMBO J. |volume=14 |issue= 2 |pages= 321-8 |year= 1995 |pmid= 7835343 |doi=  }}
*{{cite journal  | author=Parada CA, Yoon JB, Roeder RG |title=A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro. |journal=J. Biol. Chem. |volume=270 |issue= 5 |pages= 2274-83 |year= 1995 |pmid= 7836461 |doi=  }}
*{{cite journal  | author=Ou SH, Garcia-Martínez LF, Paulssen EJ, Gaynor RB |title=Role of flanking E box motifs in human immunodeficiency virus type 1 TATA element function. |journal=J. Virol. |volume=68 |issue= 11 |pages= 7188-99 |year= 1994 |pmid= 7933101 |doi=  }}
*{{cite journal  | author=Kashanchi F, Piras G, Radonovich MF, ''et al.'' |title=Direct interaction of human TFIID with the HIV-1 transactivator tat. |journal=Nature |volume=367 |issue= 6460 |pages= 295-9 |year= 1994 |pmid= 8121496 |doi= 10.1038/367295a0 }}
*{{cite journal  | author=Wang Z, Morris GF, Rice AP, ''et al.'' |title=Wild-type and transactivation-defective mutants of human immunodeficiency virus type 1 Tat protein bind human TATA-binding protein in vitro. |journal=J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. |volume=12 |issue= 2 |pages= 128-38 |year= 1996 |pmid= 8680883 |doi=  }}
*{{cite journal  | author=Pendergrast PS, Morrison D, Tansey WP, Hernandez N |title=Mutations in the carboxy-terminal domain of TBP affect the synthesis of human immunodeficiency virus type 1 full-length and short transcripts similarly. |journal=J. Virol. |volume=70 |issue= 8 |pages= 5025-34 |year= 1996 |pmid= 8764009 |doi=  }}
*{{cite journal  | author=Kashanchi F, Khleif SN, Duvall JF, ''et al.'' |title=Interaction of human immunodeficiency virus type 1 Tat with a unique site of TFIID inhibits negative cofactor Dr1 and stabilizes the TFIID-TFIIA complex. |journal=J. Virol. |volume=70 |issue= 8 |pages= 5503-10 |year= 1996 |pmid= 8764062 |doi=  }}
*{{cite journal  | author=Zhou Q, Sharp PA |title=Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat. |journal=Science |volume=274 |issue= 5287 |pages= 605-10 |year= 1996 |pmid= 8849451 |doi=  }}
*{{cite journal  | author=Tanese N, Saluja D, Vassallo MF, ''et al.'' |title=Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=93 |issue= 24 |pages= 13611-6 |year= 1997 |pmid= 8942982 |doi=  }}
*{{cite journal  | author=García-Martínez LF, Ivanov D, Gaynor RB |title=Association of Tat with purified HIV-1 and HIV-2 transcription preinitiation complexes. |journal=J. Biol. Chem. |volume=272 |issue= 11 |pages= 6951-8 |year= 1997 |pmid= 9054383 |doi=  }}
*{{cite journal  | author=Mengus G, May M, Carré L, ''et al.'' |title=Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. |journal=Genes Dev. |volume=11 |issue= 11 |pages= 1381-95 |year= 1997 |pmid= 9192867 |doi=  }}
*{{cite journal  | author=Saluja D, Vassallo MF, Tanese N |title=Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. |journal=Mol. Cell. Biol. |volume=18 |issue= 10 |pages= 5734-43 |year= 1998 |pmid= 9742090 |doi=  }}
*{{cite journal  | author=Brand M, Yamamoto K, Staub A, Tora L |title=Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. |journal=J. Biol. Chem. |volume=274 |issue= 26 |pages= 18285-9 |year= 1999 |pmid= 10373431 |doi=  }}
*{{cite journal  | author=Inada A, Someya Y, Yamada Y, ''et al.'' |title=The cyclic AMP response element modulator family regulates the insulin gene transcription by interacting with transcription factor IID. |journal=J. Biol. Chem. |volume=274 |issue= 30 |pages= 21095-103 |year= 1999 |pmid= 10409662 |doi=  }}
*{{cite journal  | author=Gangloff YG, Werten S, Romier C, ''et al.'' |title=The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs. |journal=Mol. Cell. Biol. |volume=20 |issue= 1 |pages= 340-51 |year= 2000 |pmid= 10594036 |doi=  }}
*{{cite journal  | author=Brand M, Moggs JG, Oulad-Abdelghani M, ''et al.'' |title=UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. |journal=EMBO J. |volume=20 |issue= 12 |pages= 3187-96 |year= 2001 |pmid= 11406595 |doi= 10.1093/emboj/20.12.3187 }}
*{{cite journal  | author=Martinez E, Palhan VB, Tjernberg A, ''et al.'' |title=Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. |journal=Mol. Cell. Biol. |volume=21 |issue= 20 |pages= 6782-95 |year= 2001 |pmid= 11564863 |doi= 10.1128/MCB.21.20.6782-6795.2001 }}
*{{cite journal  | author=Guermah M, Tao Y, Roeder RG |title=Positive and negative TAF(II) functions that suggest a dynamic TFIID structure and elicit synergy with traps in activator-induced transcription. |journal=Mol. Cell. Biol. |volume=21 |issue= 20 |pages= 6882-94 |year= 2001 |pmid= 11564872 |doi= 10.1128/MCB.21.20.6882-6894.2001 }}
*{{cite journal  | author=Felinski EA, Quinn PG |title=The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=98 |issue= 23 |pages= 13078-83 |year= 2001 |pmid= 11687654 |doi= 10.1073/pnas.241337698 }}
*{{cite journal  | author=Deloukas P, Matthews LH, Ashurst J, ''et al.'' |title=The DNA sequence and comparative analysis of human chromosome 20. |journal=Nature |volume=414 |issue= 6866 |pages= 865-71 |year= 2002 |pmid= 11780052 |doi= 10.1038/414865a }}
}}
{{refend}}


{{protein-stub}}
== Further reading ==
{{WikiDoc Sources}}
{{Refbegin | 2}}
* {{cite journal | vauthors = Zhou Q, Sharp PA | title = Novel mechanism and factor for regulation by HIV-1 Tat | journal = EMBO J. | volume = 14 | issue = 2 | pages = 321–8 | year = 1995 | pmid = 7835343 | pmc = 398086 | doi =  }}
* {{cite journal | vauthors = Parada CA, Yoon JB, Roeder RG | title = A novel LBP-1-mediated restriction of HIV-1 transcription at the level of elongation in vitro | journal = J. Biol. Chem. | volume = 270 | issue = 5 | pages = 2274–83 | year = 1995 | pmid = 7836461 | doi = 10.1074/jbc.270.5.2274 }}
* {{cite journal | vauthors = Ou SH, Garcia-Martínez LF, Paulssen EJ, Gaynor RB | title = Role of flanking E box motifs in human immunodeficiency virus type 1 TATA element function | journal = J. Virol. | volume = 68 | issue = 11 | pages = 7188–99 | year = 1994 | pmid = 7933101 | pmc = 237158 | doi =  }}
* {{cite journal | vauthors = Kashanchi F, Piras G, Radonovich MF, Duvall JF, Fattaey A, Chiang CM, Roeder RG, Brady JN | title = Direct interaction of human TFIID with the HIV-1 transactivator tat | journal = Nature | volume = 367 | issue = 6460 | pages = 295–9 | year = 1994 | pmid = 8121496 | doi = 10.1038/367295a0 }}
* {{cite journal | vauthors = Wang Z, Morris GF, Rice AP, Xiong W, Morris CB | title = Wild-type and transactivation-defective mutants of human immunodeficiency virus type 1 Tat protein bind human TATA-binding protein in vitro | journal = J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. | volume = 12 | issue = 2 | pages = 128–38 | year = 1996 | pmid = 8680883 | doi = 10.1097/00042560-199606010-00005 }}
* {{cite journal | vauthors = Pendergrast PS, Morrison D, Tansey WP, Hernandez N | title = Mutations in the carboxy-terminal domain of TBP affect the synthesis of human immunodeficiency virus type 1 full-length and short transcripts similarly | journal = J. Virol. | volume = 70 | issue = 8 | pages = 5025–34 | year = 1996 | pmid = 8764009 | pmc = 190456 | doi =  }}
* {{cite journal | vauthors = Kashanchi F, Khleif SN, Duvall JF, Sadaie MR, Radonovich MF, Cho M, Martin MA, Chen SY, Weinmann R, Brady JN | title = Interaction of human immunodeficiency virus type 1 Tat with a unique site of TFIID inhibits negative cofactor Dr1 and stabilizes the TFIID-TFIIA complex | journal = J. Virol. | volume = 70 | issue = 8 | pages = 5503–10 | year = 1996 | pmid = 8764062 | pmc = 190508 | doi =  }}
* {{cite journal | vauthors = Zhou Q, Sharp PA | title = Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat | journal = Science | volume = 274 | issue = 5287 | pages = 605–10 | year = 1996 | pmid = 8849451 | doi = 10.1126/science.274.5287.605 }}
* {{cite journal | vauthors = García-Martínez LF, Ivanov D, Gaynor RB | title = Association of Tat with purified HIV-1 and HIV-2 transcription preinitiation complexes | journal = J. Biol. Chem. | volume = 272 | issue = 11 | pages = 6951–8 | year = 1997 | pmid = 9054383 | doi = 10.1074/jbc.272.11.6951 }}
* {{cite journal | vauthors = Saluja D, Vassallo MF, Tanese N | title = Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators | journal = Mol. Cell. Biol. | volume = 18 | issue = 10 | pages = 5734–43 | year = 1998 | pmid = 9742090 | pmc = 109159 | doi =  10.1128/mcb.18.10.5734}}
* {{cite journal | vauthors = Brand M, Yamamoto K, Staub A, Tora L | title = Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction | journal = J. Biol. Chem. | volume = 274 | issue = 26 | pages = 18285–9 | year = 1999 | pmid = 10373431 | doi = 10.1074/jbc.274.26.18285 }}
* {{cite journal | vauthors = Inada A, Someya Y, Yamada Y, Ihara Y, Kubota A, Ban N, Watanabe R, Tsuda K, Seino Y | title = The cyclic AMP response element modulator family regulates the insulin gene transcription by interacting with transcription factor IID | journal = J. Biol. Chem. | volume = 274 | issue = 30 | pages = 21095–103 | year = 1999 | pmid = 10409662 | doi = 10.1074/jbc.274.30.21095 }}
* {{cite journal | vauthors = Gangloff YG, Werten S, Romier C, Carré L, Poch O, Moras D, Davidson I | title = The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs | journal = Mol. Cell. Biol. | volume = 20 | issue = 1 | pages = 340–51 | year = 2000 | pmid = 10594036 | pmc = 85089 | doi = 10.1128/MCB.20.1.340-351.2000 }}
* {{cite journal | vauthors = Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L | title = UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation | journal = EMBO J. | volume = 20 | issue = 12 | pages = 3187–96 | year = 2001 | pmid = 11406595 | pmc = 150203 | doi = 10.1093/emboj/20.12.3187 }}
* {{cite journal | vauthors = Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG | title = Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo | journal = Mol. Cell. Biol. | volume = 21 | issue = 20 | pages = 6782–95 | year = 2001 | pmid = 11564863 | pmc = 99856 | doi = 10.1128/MCB.21.20.6782-6795.2001 }}
* {{cite journal | vauthors = Guermah M, Tao Y, Roeder RG | title = Positive and negative TAF(II) functions that suggest a dynamic TFIID structure and elicit synergy with traps in activator-induced transcription | journal = Mol. Cell. Biol. | volume = 21 | issue = 20 | pages = 6882–94 | year = 2001 | pmid = 11564872 | pmc = 99865 | doi = 10.1128/MCB.21.20.6882-6894.2001 }}
* {{cite journal | vauthors = Felinski EA, Quinn PG | title = The coactivator dTAF(II)110/hTAF(II)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB | journal = Proc. Natl. Acad. Sci. U.S.A. | volume = 98 | issue = 23 | pages = 13078–83 | year = 2001 | pmid = 11687654 | pmc = 60827 | doi = 10.1073/pnas.241337698 }}
{{Refend}}
{{PDB Gallery|geneid=6874}}

Revision as of 20:59, 8 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Transcription initiation factor TFIID subunit 4 is a protein that in humans is encoded by the TAF4 gene.[1][2][3]

Function

Initiation of transcription by RNA polymerase II requires the activities of more than 70 polypeptides. The protein that coordinates these activities is transcription factor IID (TFIID), which binds to the core promoter to position the polymerase properly, serves as the scaffold for assembly of the remainder of the transcription complex, and acts as a channel for regulatory signals. TFIID is composed of the TATA-binding protein (TBP) and a group of evolutionarily conserved proteins known as TBP-associated factors or TAFs. TAFs may participate in basal transcription, serve as coactivators, function in promoter recognition or modify general transcription factors (GTFs) to facilitate complex assembly and transcription initiation. This gene encodes one of the larger subunits of TFIID that has been shown to potentiate transcriptional activation by retinoic acid, thyroid hormone and vitamin D3 receptors. In addition, this subunit interacts with the transcription factor CREB, which has a glutamine-rich activation domain, and binds to other proteins containing glutamine-rich regions. Aberrant binding to this subunit by proteins with expanded polyglutamine regions has been suggested as one of the pathogenetic mechanisms underlying a group of neurodegenerative disorders referred to as polyglutamine diseases.[3]

Interactions

TAF4 has been shown to interact with:

Protein domain

TAF4
File:PDB 1h3o EBI.jpg
crystal structure of the human taf4-taf12 (tafii135-tafii20) complex
Identifiers
SymbolTAF4
PfamPF05236
InterProIPR007900
SCOP1h3o
SUPERFAMILY1h3o

Yeast TFIID comprises the TATA binding protein and 14 TBP-associated factors (TAFIIs), nine of which contain histone-fold domains (INTERPRO). The C-terminal region of the TFIID-specific yeast TAF4 (yTAF4) containing the HFD shares strong sequence similarity with Drosophila (d)TAF4 and human TAF4. A structure/function analysis of yTAF4 demonstrates that the HFD, a short conserved C-terminal domain (CCTD), and the region separating them are all required for yTAF4 function. This region of similarity is found in Transcription initiation factor TFIID component TAF4.[8]

References

  1. Tanese N, Saluja D, Vassallo MF, Chen JL, Admon A (January 1997). "Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100". Proc. Natl. Acad. Sci. U.S.A. 93 (24): 13611–6. doi:10.1073/pnas.93.24.13611. PMC 19367. PMID 8942982. Check date values in: |year= / |date= mismatch (help)
  2. Mengus G, May M, Carré L, Chambon P, Davidson I (July 1997). "Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells". Genes Dev. 11 (11): 1381–95. doi:10.1101/gad.11.11.1381. PMID 9192867.
  3. 3.0 3.1 "Entrez Gene: TAF4 TAF4 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 135kDa".
  4. Vassallo MF, Tanese N (April 2002). "Isoform-specific interaction of HP1 with human TAFII130". Proc. Natl. Acad. Sci. U.S.A. 99 (9): 5919–24. doi:10.1073/pnas.092025499. PMC 122877. PMID 11959914.
  5. Pointud JC, Mengus G, Brancorsini S, Monaco L, Parvinen M, Sassone-Corsi P, Davidson I (May 2003). "The intracellular localisation of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation". J. Cell Sci. 116 (Pt 9): 1847–58. doi:10.1242/jcs.00391. PMID 12665565.
  6. Bellorini M, Lee DK, Dantonel JC, Zemzoumi K, Roeder RG, Tora L, Mantovani R (June 1997). "CCAAT binding NF-Y-TBP interactions: NF-YB and NF-YC require short domains adjacent to their histone fold motifs for association with TBP basic residues". Nucleic Acids Res. 25 (11): 2174–81. doi:10.1093/nar/25.11.2174. PMC 146709. PMID 9153318.
  7. Brand M, Moggs JG, Oulad-Abdelghani M, Lejeune F, Dilworth FJ, Stevenin J, Almouzni G, Tora L (June 2001). "UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation". EMBO J. 20 (12): 3187–96. doi:10.1093/emboj/20.12.3187. PMC 150203. PMID 11406595.
  8. Thuault S, Gangloff YG, Kirchner J, Sanders S, Werten S, Romier C, Weil PA, Davidson I (November 2002). "Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain". J. Biol. Chem. 277 (47): 45510–7. doi:10.1074/jbc.M206556200. PMID 12237303.

Further reading