RARS (gene): Difference between revisions
Jump to navigation
Jump to search
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Arginyl-tRNA synthetase, cytoplasmic''' is an [[enzyme]] that in humans is encoded by the ''RARS'' [[gene]].<ref name="pmid7590355">{{cite journal |vauthors=Girjes AA, Hobson K, Chen P, Lavin MF | title = Cloning and characterization of cDNA encoding a human arginyl-tRNA synthetase | journal = Gene | volume = 164 | issue = 2 | pages = 347–50 |date=December 1995 | pmid = 7590355 | pmc = | doi =10.1016/0378-1119(95)00502-W }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: RARS arginyl-tRNA synthetase| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5917| accessdate = }}</ref> | ||
}} | |||
{{ | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Arginyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.<ref name="entrez" | | summary_text = Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Arginyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.<ref name="entrez"/> | ||
}} | }} | ||
==Genetics== | |||
Mutations in RARS cause {{SWL|type=mutation_results_in|target=hypomyelination|label=hypomyelination}}.<ref>{{Cite journal | |||
| pmid = 24777941 | |||
| year = 2014 | |||
| author1 = Wolf | |||
| first1 = N. I. | |||
| title = Mutations in RARS cause hypomyelination | |||
| journal = Annals of Neurology | |||
| pages = 134–9 | |||
| last2 = Salomons | |||
| first2 = G. S. | |||
| last3 = Rodenburg | |||
| first3 = R. J. | |||
| last4 = Pouwels | |||
| first4 = P. J. | |||
| last5 = Schieving | |||
| first5 = J. H. | |||
| last6 = Derks | |||
| first6 = T. G. | |||
| last7 = Fock | |||
| first7 = J. M. | |||
| last8 = Rump | |||
| first8 = P | |||
| last9 = Van Beek | |||
| first9 = D. M. | |||
| last10 = Van Der Knaap | |||
| first10 = M. S. | |||
| last11 = Waisfisz | |||
| first11 = Q | |||
| doi = 10.1002/ana.24167 | |||
| volume=76 | |||
| issue=1 | |||
}}</ref> | |||
==Interactions== | |||
RARS (gene) has been shown to [[Protein-protein interaction|interact]] with [[QARS]].<ref name=pmid10801842>{{cite journal |last=Kim |first=T |authorlink= |author2=Park S G |author3=Kim J E |author4=Seol W |author5=Ko Y G |author6=Kim S |date=July 2000 |title=Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex |journal=J. Biol. Chem. |volume=275 |issue=28 |pages=21768–72 |publisher= |location = UNITED STATES| issn = 0021-9258| pmid = 10801842 |doi = 10.1074/jbc.M002404200 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = }}</ref> | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal |vauthors=McCune SA, Yu PL, Nance WE |title=A genetic study of erythrocyte arginine-tRNA synthetase activity in man. |journal=Acta geneticae medicae et gemellologiae |volume=26 |issue= 1 |pages= 21–7 |year= 1977 |pmid= 562050 |doi= }} | ||
*{{cite journal | author=Norcum MT |title=Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents. |journal=J. Biol. Chem. |volume=266 |issue= 23 |pages= | *{{cite journal | author=Norcum MT |title=Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents. |journal=J. Biol. Chem. |volume=266 |issue= 23 |pages= 15398–405 |year= 1991 |pmid= 1651330 |doi= }} | ||
*{{cite journal | | *{{cite journal |vauthors=Wang HY, Pan F |title=Kinetic mechanism of arginyl-tRNA synthetase from human placenta. |journal=Int. J. Biochem. |volume=16 |issue= 12 |pages= 1379–85 |year= 1985 |pmid= 6530022 |doi=10.1016/0020-711X(84)90244-1 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | ||
*{{cite journal | *{{cite journal |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }} | ||
*{{cite journal | *{{cite journal |vauthors=Rho SB, Lee JS, Jeong EJ, etal |title=A multifunctional repeated motif is present in human bifunctional tRNA synthetase |journal=J. Biol. Chem. |volume=273 |issue= 18 |pages= 11267–73 |year= 1998 |pmid= 9556618 |doi=10.1074/jbc.273.18.11267 }} | ||
*{{cite journal | *{{cite journal |vauthors=Quevillon S, Robinson JC, Berthonneau E, etal |title=Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein |journal=J. Mol. Biol. |volume=285 |issue= 1 |pages= 183–95 |year= 1999 |pmid= 9878398 |doi= 10.1006/jmbi.1998.2316 }} | ||
*{{cite journal | *{{cite journal |vauthors=Park SG, Jung KH, Lee JS, etal |title=Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase |journal=J. Biol. Chem. |volume=274 |issue= 24 |pages= 16673–6 |year= 1999 |pmid= 10358004 |doi=10.1074/jbc.274.24.16673 }} | ||
*{{cite journal | *{{cite journal |vauthors=Kim T, Park SG, Kim JE, etal |title=Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex |journal=J. Biol. Chem. |volume=275 |issue= 28 |pages= 21768–72 |year= 2000 |pmid= 10801842 |doi= 10.1074/jbc.M002404200 }} | ||
*{{cite journal | *{{cite journal |vauthors=Kang J, Kim T, Ko YG, etal |title=Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases |journal=J. Biol. Chem. |volume=275 |issue= 41 |pages= 31682–8 |year= 2000 |pmid= 10913161 |doi= 10.1074/jbc.M909965199 }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | *{{cite journal |vauthors=Gevaert K, Goethals M, Martens L, etal |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566–9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 }} | ||
*{{cite journal | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ling C, Yao YN, Zheng YG, etal |title=The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex |journal=J. Biol. Chem. |volume=280 |issue= 41 |pages= 34755–63 |year= 2005 |pmid= 16055448 |doi= 10.1074/jbc.M413511200 }} | ||
*{{cite journal | *{{cite journal |vauthors=Kimura K, Wakamatsu A, Suzuki Y, etal |title=Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes |journal=Genome Res. |volume=16 |issue= 1 |pages= 55–65 |year= 2006 |pmid= 16344560 |doi= 10.1101/gr.4039406 | pmc=1356129 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ewing RM, Chu P, Elisma F, etal |title=Large-scale mapping of human protein-protein interactions by mass spectrometry |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 }} | ||
*{{cite journal |vauthors=Bottoni A, Vignali C, Piccin D, etal |title=Proteasomes and RARS modulate AIMP1/EMAP II secretion in human cancer cell lines |journal=J. Cell. Physiol. |volume=212 |issue= 2 |pages= 293–7 |year= 2007 |pmid= 17443684 |doi= 10.1002/jcp.21083 }} | |||
*{{cite journal | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{ | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{ | {{PBB_Controls | ||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{gene-5-stub}} |
Revision as of 08:55, 10 September 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Arginyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the RARS gene.[1][2]
Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. Arginyl-tRNA synthetase belongs to the class-I aminoacyl-tRNA synthetase family.[2]
Genetics
Mutations in RARS cause hypomyelination .[3]
Interactions
RARS (gene) has been shown to interact with QARS.[4]
References
- ↑ Girjes AA, Hobson K, Chen P, Lavin MF (December 1995). "Cloning and characterization of cDNA encoding a human arginyl-tRNA synthetase". Gene. 164 (2): 347–50. doi:10.1016/0378-1119(95)00502-W. PMID 7590355.
- ↑ 2.0 2.1 "Entrez Gene: RARS arginyl-tRNA synthetase".
- ↑ Wolf, N. I.; Salomons, G. S.; Rodenburg, R. J.; Pouwels, P. J.; Schieving, J. H.; Derks, T. G.; Fock, J. M.; Rump, P; Van Beek, D. M.; Van Der Knaap, M. S.; Waisfisz, Q (2014). "Mutations in RARS cause hypomyelination". Annals of Neurology. 76 (1): 134–9. doi:10.1002/ana.24167. PMID 24777941.
- ↑ Kim, T; Park S G; Kim J E; Seol W; Ko Y G; Kim S (July 2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". J. Biol. Chem. UNITED STATES. 275 (28): 21768–72. doi:10.1074/jbc.M002404200. ISSN 0021-9258. PMID 10801842.
Further reading
- McCune SA, Yu PL, Nance WE (1977). "A genetic study of erythrocyte arginine-tRNA synthetase activity in man". Acta geneticae medicae et gemellologiae. 26 (1): 21–7. PMID 562050.
- Norcum MT (1991). "Structural analysis of the high molecular mass aminoacyl-tRNA synthetase complex. Effects of neutral salts and detergents". J. Biol. Chem. 266 (23): 15398–405. PMID 1651330.
- Wang HY, Pan F (1985). "Kinetic mechanism of arginyl-tRNA synthetase from human placenta". Int. J. Biochem. 16 (12): 1379–85. doi:10.1016/0020-711X(84)90244-1. PMID 6530022.
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Rho SB, Lee JS, Jeong EJ, et al. (1998). "A multifunctional repeated motif is present in human bifunctional tRNA synthetase". J. Biol. Chem. 273 (18): 11267–73. doi:10.1074/jbc.273.18.11267. PMID 9556618.
- Quevillon S, Robinson JC, Berthonneau E, et al. (1999). "Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein". J. Mol. Biol. 285 (1): 183–95. doi:10.1006/jmbi.1998.2316. PMID 9878398.
- Park SG, Jung KH, Lee JS, et al. (1999). "Precursor of pro-apoptotic cytokine modulates aminoacylation activity of tRNA synthetase". J. Biol. Chem. 274 (24): 16673–6. doi:10.1074/jbc.274.24.16673. PMID 10358004.
- Kim T, Park SG, Kim JE, et al. (2000). "Catalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex". J. Biol. Chem. 275 (28): 21768–72. doi:10.1074/jbc.M002404200. PMID 10801842.
- Kang J, Kim T, Ko YG, et al. (2000). "Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases". J. Biol. Chem. 275 (41): 31682–8. doi:10.1074/jbc.M909965199. PMID 10913161.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Gevaert K, Goethals M, Martens L, et al. (2004). "Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides". Nat. Biotechnol. 21 (5): 566–9. doi:10.1038/nbt810. PMID 12665801.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Ling C, Yao YN, Zheng YG, et al. (2005). "The C-terminal appended domain of human cytosolic leucyl-tRNA synthetase is indispensable in its interaction with arginyl-tRNA synthetase in the multi-tRNA synthetase complex". J. Biol. Chem. 280 (41): 34755–63. doi:10.1074/jbc.M413511200. PMID 16055448.
- Kimura K, Wakamatsu A, Suzuki Y, et al. (2006). "Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes". Genome Res. 16 (1): 55–65. doi:10.1101/gr.4039406. PMC 1356129. PMID 16344560.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
- Bottoni A, Vignali C, Piccin D, et al. (2007). "Proteasomes and RARS modulate AIMP1/EMAP II secretion in human cancer cell lines". J. Cell. Physiol. 212 (2): 293–7. doi:10.1002/jcp.21083. PMID 17443684.
This article on a gene on human chromosome 5 is a stub. You can help Wikipedia by expanding it. |