ATG12: Difference between revisions
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m →Further reading: task using AWB |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''Autophagy-related protein 12''' is a [[protein]] that in humans is encoded by the ''ATG12'' [[gene]].<ref name="pmid9852036">{{cite journal | vauthors = Mizushima N, Sugita H, Yoshimori T, Ohsumi Y | title = A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy | journal = J Biol Chem | volume = 273 | issue = 51 | pages = 33889–33892 |date=Jan 1999 | pmid = 9852036 | pmc = | doi =10.1074/jbc.273.51.33889 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=9140| accessdate = }}</ref> | ||
}} | |||
{{ | |||
| | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | <!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | ||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Autophagy is a process of bulk protein degradation in which cytoplasmic components, including organelles, are enclosed in double-membrane structures called autophagosomes and delivered to lysosomes or vacuoles for degradation. ATG12 is the human homolog of a yeast protein involved in autophagy (Mizushima et al., 1998).[supplied by OMIM]<ref name="entrez" | | summary_text = Autophagy is a process of bulk protein degradation in which cytoplasmic components, including organelles, are enclosed in double-membrane structures called autophagosomes and delivered to lysosomes or vacuoles for degradation. ATG12 is the human homolog of a yeast protein involved in autophagy (Mizushima et al., 1998).[supplied by OMIM]<ref name="entrez"/> | ||
}} | }} | ||
[[Autophagy]] requires the covalent attachment of the protein Atg12 to [[ATG5]] through a [[ubiquitin]]-like conjugation system. The Atg12-Atg5 conjugate then promotes the conjugation of [[ATG8]] to the lipid [[phosphatidylethanolamine]].<ref>J. Geng, and D. J. Klionsky, 'The Atg8 and Atg12 Ubiquitin-Like Conjugation Systems in Macroautophagy. 'Protein Modifications: Beyond the Usual Suspects' Review Series', EMBO Rep, 9 (2008), 859-64.</ref> | |||
Atg12 was found to be involved in [[apoptosis]]. This protein promotes apoptosis through an interaction with anti-apoptotic members of the [[Bcl-2 family]].<ref>A. D. Rubinstein, M. Eisenstein, Y. Ber, S. Bialik, and A. Kimchi, 'The Autophagy Protein Atg12 Associates with Antiapoptotic Bcl-2 Family Members to Promote Mitochondrial Apoptosis', Mol Cell, 44 (2011), 698-709</ref> | |||
==References== | ==References== | ||
{{reflist| | {{reflist}} | ||
==External links== | |||
* {{UCSC gene info|ATG12}} | |||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal | vauthors=Prigione A, Cortopassi G |title=Mitochondrial DNA deletions and chloramphenicol treatment stimulate the autophagic transcript ATG12 |journal=Autophagy |volume=3 |issue= 4 |pages= 377–80 |year= 2007 |pmid= 17457038 |doi= 10.4161/auto.4239}} | ||
*{{cite journal | author=Ewing RM | *{{cite journal | author=Ewing RM |title=Large-scale mapping of human protein-protein interactions by mass spectrometry |journal=Mol. Syst. Biol. |volume=3 |issue= 1|pages= 89 |year= 2007 |pmid= 17353931 |doi= 10.1038/msb4100134 | pmc=1847948 |name-list-format=vanc| author2=Chu P | author3=Elisma F | display-authors=3 | last4=Li | first4=Hongyan | last5=Taylor | first5=Paul | last6=Climie | first6=Shane | last7=McBroom-Cerajewski | first7=Linda | last8=Robinson | first8=Mark D | last9=O'Connor | first9=Liam }} | ||
*{{cite journal | author=Rual JF | *{{cite journal | author=Rual JF |title=Towards a proteome-scale map of the human protein-protein interaction network |journal=Nature |volume=437 |issue= 7062 |pages= 1173–1178 |year= 2005 |pmid= 16189514 |doi= 10.1038/nature04209 |name-list-format=vanc| author2=Venkatesan K | author3=Hao T | display-authors=3 | last4=Hirozane-Kishikawa | first4=Tomoko | last5=Dricot | first5=Amélie | last6=Li | first6=Ning | last7=Berriz | first7=Gabriel F. | last8=Gibbons | first8=Francis D. | last9=Dreze | first9=Matija }} | ||
*{{cite journal | author=Gerhard DS | *{{cite journal | author=Gerhard DS |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–2127 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 |name-list-format=vanc| author2=Wagner L | author3=Feingold EA | display-authors=3 | last4=Shenmen | first4=CM | last5=Grouse | first5=LH | last6=Schuler | first6=G | last7=Klein | first7=SL | last8=Old | first8=S | last9=Rasooly | first9=R }} | ||
*{{cite journal | author=Ota T | *{{cite journal | author=Ota T |title=Complete sequencing and characterization of 21,243 full-length human cDNAs |journal=Nat. Genet. |volume=36 |issue= 1 |pages= 40–45 |year= 2004 |pmid= 14702039 |doi= 10.1038/ng1285 |name-list-format=vanc| author2=Suzuki Y | author3=Nishikawa T | display-authors=3 | last4=Otsuki | first4=Tetsuji | last5=Sugiyama | first5=Tomoyasu | last6=Irie | first6=Ryotaro | last7=Wakamatsu | first7=Ai | last8=Hayashi | first8=Koji | last9=Sato | first9=Hiroyuki }} | ||
*{{cite journal | author=Mizushima N | *{{cite journal | author=Mizushima N |title=Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate |journal=J. Cell Sci. |volume=116 |issue= Pt 9 |pages= 1679–1688 |year= 2004 |pmid= 12665549 |doi=10.1242/jcs.00381 |name-list-format=vanc| author2=Kuma A | author3=Kobayashi Y | display-authors=3 | last4=Yamamoto | first4=A | last5=Matsubae | first5=M | last6=Takao | first6=T | last7=Natsume | first7=T | last8=Ohsumi | first8=Y | last9=Yoshimori | first9=T }} | ||
*{{cite journal | | *{{cite journal | vauthors=Mizushima N, Yoshimori T, Ohsumi Y |title=Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method |journal=FEBS Lett. |volume=532 |issue= 3 |pages= 450–454 |year= 2003 |pmid= 12482611 |doi=10.1016/S0014-5793(02)03739-0 }} | ||
*{{cite journal | author=Strausberg RL | *{{cite journal | author=Strausberg RL |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–16903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 |name-list-format=vanc| author2=Feingold EA | author3=Grouse LH | display-authors=3 | last4=Derge | first4=JG | last5=Klausner | first5=RD | last6=Collins | first6=FS | last7=Wagner | first7=L | last8=Shenmen | first8=CM | last9=Schuler | first9=GD }} | ||
*{{cite journal | author=Tanida I | *{{cite journal | author=Tanida I |title=Mammalian Apg12p, but not the Apg12p.Apg5p conjugate, facilitates LC3 processing |journal=Biochem. Biophys. Res. Commun. |volume=296 |issue= 5 |pages= 1164–1170 |year= 2002 |pmid= 12207896 |doi=10.1016/S0006-291X(02)02057-0 |name-list-format=vanc| author2=Nishitani T | author3=Nemoto T | display-authors=3 | last4=Ueno | first4=T | last5=Kominami | first5=E }} | ||
*{{cite journal | author=Tanida I | *{{cite journal | author=Tanida I |title=Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs |journal=Biochem. Biophys. Res. Commun. |volume=292 |issue= 1 |pages= 256–262 |year= 2002 |pmid= 11890701 |doi=10.1006/bbrc.2002.6645 |name-list-format=vanc| author2=Tanida-Miyake E | author3=Nishitani T | display-authors=3 | last4=Komatsu | first4=M | last5=Yamazaki | first5=H | last6=Ueno | first6=T | last7=Kominami | first7=E }} | ||
*{{cite journal | author=Tanida I | *{{cite journal | author=Tanida I |title=Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p |journal=J. Biol. Chem. |volume=277 |issue= 16 |pages= 13739–13744 |year= 2002 |pmid= 11825910 |doi= 10.1074/jbc.M200385200 |name-list-format=vanc| author2=Tanida-Miyake E | author3=Komatsu M | display-authors=3 | last4=Ueno | first4=T | last5=Kominami | first5=E }} | ||
*{{cite journal | author=Ueno K |title=Cloning and tissue expression of cDNAs from chromosome 5q21-22 which is frequently deleted in advanced lung cancer |journal=Hum. Genet. |volume=102 |issue= 1 |pages= 63–68 |year= 1998 |pmid= 9490301 |doi=10.1007/s004390050655 |name-list-format=vanc| author2=Kumagai T | author3=Kijima T | display-authors=3 | last4=Kishimoto | first4=Tadamitsu | last5=Hosoe | first5=S. }} | |||
*{{cite journal | author=Ueno K | *{{cite journal | vauthors=Bonaldo MF, Lennon G, Soares MB |title=Normalization and subtraction: two approaches to facilitate gene discovery |journal=Genome Res. |volume=6 |issue= 9 |pages= 791–806 |year= 1997 |pmid= 8889548 |doi=10.1101/gr.6.9.791 }} | ||
*{{cite journal | | |||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{ | <!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | ||
{{ | {{PBB_Controls | ||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{gene-5-stub}} |
Latest revision as of 19:19, 8 November 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Autophagy-related protein 12 is a protein that in humans is encoded by the ATG12 gene.[1][2]
Autophagy is a process of bulk protein degradation in which cytoplasmic components, including organelles, are enclosed in double-membrane structures called autophagosomes and delivered to lysosomes or vacuoles for degradation. ATG12 is the human homolog of a yeast protein involved in autophagy (Mizushima et al., 1998).[supplied by OMIM][2]
Autophagy requires the covalent attachment of the protein Atg12 to ATG5 through a ubiquitin-like conjugation system. The Atg12-Atg5 conjugate then promotes the conjugation of ATG8 to the lipid phosphatidylethanolamine.[3]
Atg12 was found to be involved in apoptosis. This protein promotes apoptosis through an interaction with anti-apoptotic members of the Bcl-2 family.[4]
References
- ↑ Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (Jan 1999). "A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy". J Biol Chem. 273 (51): 33889–33892. doi:10.1074/jbc.273.51.33889. PMID 9852036.
- ↑ 2.0 2.1 "Entrez Gene: ATG12 ATG12 autophagy related 12 homolog (S. cerevisiae)".
- ↑ J. Geng, and D. J. Klionsky, 'The Atg8 and Atg12 Ubiquitin-Like Conjugation Systems in Macroautophagy. 'Protein Modifications: Beyond the Usual Suspects' Review Series', EMBO Rep, 9 (2008), 859-64.
- ↑ A. D. Rubinstein, M. Eisenstein, Y. Ber, S. Bialik, and A. Kimchi, 'The Autophagy Protein Atg12 Associates with Antiapoptotic Bcl-2 Family Members to Promote Mitochondrial Apoptosis', Mol Cell, 44 (2011), 698-709
External links
- Human ATG12 genome location and ATG12 gene details page in the UCSC Genome Browser.
Further reading
- Prigione A, Cortopassi G (2007). "Mitochondrial DNA deletions and chloramphenicol treatment stimulate the autophagic transcript ATG12". Autophagy. 3 (4): 377–80. doi:10.4161/auto.4239. PMID 17457038.
- Ewing RM, Chu P, Elisma F, et al. (2007). "Large-scale mapping of human protein-protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.
- Rual JF, Venkatesan K, Hao T, et al. (2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–1178. doi:10.1038/nature04209. PMID 16189514.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–2127. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–45. doi:10.1038/ng1285. PMID 14702039.
- Mizushima N, Kuma A, Kobayashi Y, et al. (2004). "Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate". J. Cell Sci. 116 (Pt 9): 1679–1688. doi:10.1242/jcs.00381. PMID 12665549.
- Mizushima N, Yoshimori T, Ohsumi Y (2003). "Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method". FEBS Lett. 532 (3): 450–454. doi:10.1016/S0014-5793(02)03739-0. PMID 12482611.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–16903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Tanida I, Nishitani T, Nemoto T, et al. (2002). "Mammalian Apg12p, but not the Apg12p.Apg5p conjugate, facilitates LC3 processing". Biochem. Biophys. Res. Commun. 296 (5): 1164–1170. doi:10.1016/S0006-291X(02)02057-0. PMID 12207896.
- Tanida I, Tanida-Miyake E, Nishitani T, et al. (2002). "Murine Apg12p has a substrate preference for murine Apg7p over three Apg8p homologs". Biochem. Biophys. Res. Commun. 292 (1): 256–262. doi:10.1006/bbrc.2002.6645. PMID 11890701.
- Tanida I, Tanida-Miyake E, Komatsu M, et al. (2002). "Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p". J. Biol. Chem. 277 (16): 13739–13744. doi:10.1074/jbc.M200385200. PMID 11825910.
- Ueno K, Kumagai T, Kijima T, et al. (1998). "Cloning and tissue expression of cDNAs from chromosome 5q21-22 which is frequently deleted in advanced lung cancer". Hum. Genet. 102 (1): 63–68. doi:10.1007/s004390050655. PMID 9490301.
- Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID 8889548.
This article on a gene on human chromosome 5 is a stub. You can help Wikipedia by expanding it. |