REV3L: Difference between revisions
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Bot: HTTP→HTTPS (v470) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
{{ | '''Protein reversionless 3-like''' ('''REV3L''') also known as '''DNA polymerase zeta catalytic subunit''' (POLZ) is an [[enzyme]] that in humans is encoded by the ''REV3L'' [[gene]].<ref name="pmid9618506">{{cite journal |vauthors=Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW | title = A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta | journal = Proc Natl Acad Sci U S A | volume = 95 | issue = 12 | pages = 6876–80 |date=Jul 1998 | pmid = 9618506 | pmc = 22668 | doi =10.1073/pnas.95.12.6876 }}</ref><ref name="pmid9925914">{{cite journal |vauthors=Morelli C, Mungall AJ, Negrini M, Barbanti-Brodano G, Croce CM | title = Alternative splicing, genomic structure, and fine chromosome localization of REV3L | journal = Cytogenet Cell Genet | volume = 83 | issue = 1–2 | pages = 18–20 |date=Mar 1999 | pmid = 9925914 | pmc = | doi =10.1159/000015157 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: REV3L REV3-like, catalytic subunit of DNA polymerase zeta (yeast)| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=5980| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
The Rev3 subunit interacts with Rev7 to form Pol ζ, a [[DNA polymerase#Family B|B family polymerase]]. Pol ζ lacks 3' to 5' [[exonuclease]] activity and is a moderate [[fidelity]] polymerase. It cannot add nucleotides across from DNA lesions, yet it can extend from primers with terminal mismatches. This makes Pol ζ very important in [[translesion synthesis]] (TLS), because it can act in concert with other TLS polymerases that can add across the lesion to complete the bypass of the lesion. Most polymerases have difficulty extending mismatches because they cannot bind properly to the mismatched DNA. So rather than the cell dying, it can survive albeit with a mutation that may or may not be deleterious, so it is believed that Pol ζ is a driving force of evolution.{{Citation needed|date=November 2011}} | |||
< | ==Interactions== | ||
{{ | REV3L has been shown to [[Protein-protein interaction|interact]] with [[MAD2L2]].<ref name="pmid10660610">{{cite journal |vauthors=Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R | title = A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2 | journal = J. Biol. Chem. | volume = 275 | issue = 6 | pages = 4391–7 |date=February 2000 | pmid = 10660610 | doi = 10.1074/jbc.275.6.4391 }}</ref><ref name="pmid11485998">{{cite journal |vauthors=Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M | title = Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7 | journal = J. Biol. Chem. | volume = 276 | issue = 38 | pages = 35644–51 |date=September 2001 | pmid = 11485998 | doi = 10.1074/jbc.M102051200 }}</ref> | ||
| | |||
| | |||
}} | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
*{{cite journal | author=Xiao W |title=Identification, chromosomal mapping and tissue-specific expression of hREV3 encoding a putative human DNA polymerase zeta |journal=Carcinogenesis |volume=19 |issue= 5 |pages= 945–9 |year= 1998 |pmid= 9635887 |doi=10.1093/carcin/19.5.945 |name-list-format=vanc| author2=Lechler T | author3=Chow BL | display-authors=3 | last4=Fontanie | first4=T | last5=Agustus | first5=M | last6=Carter | first6=KC | last7=Wei | first7=YF }} | |||
*{{cite journal |vauthors=Lin W, Wu X, Wang Z |title=A full-length cDNA of hREV3 is predicted to encode DNA polymerase zeta for damage-induced mutagenesis in humans |journal=Mutat. Res. |volume=433 |issue= 2 |pages= 89–98 |year= 1999 |pmid= 10102035 |doi= 10.1016/s0921-8777(98)00065-2}} | |||
*{{cite journal | author=Karayianni E |title=Transcriptional map of chromosome region 6q16→q21 |journal=Cytogenet. Cell Genet. |volume=86 |issue= 3–4 |pages= 263–6 |year= 2000 |pmid= 10575223 |doi=10.1159/000015356 |name-list-format=vanc| author2=Magnanini C | author3=Orphanos V | display-authors=3 | last4=Negrini | first4=M. | last5=Maniatis | first5=G.M. | last6=Spathas | first6=D.H. | last7=Barbanti-Brodano | first7=G. | last8=Morelli | first8=C. }} | |||
*{{cite journal | author=Xiao W | *{{cite journal | author=Murakumo Y |title=A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2 |journal=J. Biol. Chem. |volume=275 |issue= 6 |pages= 4391–7 |year= 2000 |pmid= 10660610 |doi=10.1074/jbc.275.6.4391 |name-list-format=vanc| author2=Roth T | author3=Ishii H | display-authors=3 | last4=Rasio | first4=D | last5=Numata | first5=S | last6=Croce | first6=CM | last7=Fishel | first7=R }} | ||
*{{cite journal |vauthors=Masutani C, Kusumoto R, Iwai S, Hanaoka F |title=Mechanisms of accurate translesion synthesis by human DNA polymerase eta |journal=EMBO J. |volume=19 |issue= 12 |pages= 3100–9 |year= 2000 |pmid= 10856253 |doi= 10.1093/emboj/19.12.3100 | pmc=203367 }} | |||
*{{cite journal | | *{{cite journal | author=Kawamura K |title=The error-prone DNA polymerase zeta catalytic subunit (Rev3) gene is ubiquitously expressed in normal and malignant human tissues |journal=Int. J. Oncol. |volume=18 |issue= 1 |pages= 97–103 |year= 2001 |pmid= 11115544 |doi= 10.3892/ijo.18.1.97|name-list-format=vanc| author2=O-Wang J | author3=Bahar R | display-authors=3 | last4=Koshikawa | first4=N | last5=Shishikura | first5=T | last6=Nakagawara | first6=A | last7=Sakiyama | first7=S | last8=Kajiwara | first8=K | last9=Kimura | first9=M }} | ||
*{{cite journal | author=Karayianni E | *{{cite journal | author=Murakumo Y |title=Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7 |journal=J. Biol. Chem. |volume=276 |issue= 38 |pages= 35644–51 |year= 2001 |pmid= 11485998 |doi= 10.1074/jbc.M102051200 |name-list-format=vanc| author2=Ogura Y | author3=Ishii H | display-authors=3 | last4=Numata | first4=S | last5=Ichihara | first5=M | last6=Croce | first6=CM | last7=Fishel | first7=R | last8=Takahashi | first8=M }} | ||
*{{cite journal | author=Murakumo Y | *{{cite journal | author=Li Z |title=hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts |journal=Mutat. Res. |volume=510 |issue= 1–2 |pages= 71–80 |year= 2003 |pmid= 12459444 |doi= 10.1016/S0027-5107(02)00253-1 |name-list-format=vanc| author2=Zhang H | author3=McManus TP | display-authors=3 | last4=McCormick | first4=JJ | last5=Lawrence | first5=CW | last6=Maher | first6=VM }} | ||
*{{cite journal | | *{{cite journal | author=Zhu F |title=Response of human REV3 gene to gastric cancer inducing carcinogen N-methyl-N'-nitro-N-nitrosoguanidine and its role in mutagenesis |journal=World J. Gastroenterol. |volume=9 |issue= 5 |pages= 888–93 |year= 2003 |pmid= 12717825 |doi= |name-list-format=vanc| author2=Jin CX | author3=Song T | display-authors=3 | last4=Yang | first4=J | last5=Guo | first5=L | last6=Yu | first6=YN }} | ||
*{{cite journal | author=Kawamura K | *{{cite journal | author=Mungall AJ |title=The DNA sequence and analysis of human chromosome 6 |journal=Nature |volume=425 |issue= 6960 |pages= 805–11 |year= 2003 |pmid= 14574404 |doi= 10.1038/nature02055 |name-list-format=vanc| author2=Palmer SA | author3=Sims SK | display-authors=3 | last4=Edwards | first4=C. A. | last5=Ashurst | first5=J. L. | last6=Wilming | first6=L. | last7=Jones | first7=M. C. | last8=Horton | first8=R. | last9=Hunt | first9=S. E. }} | ||
*{{cite journal | author=Murakumo Y | *{{cite journal | author=Ohashi E |title=Interaction of hREV1 with three human Y-family DNA polymerases |journal=Genes Cells |volume=9 |issue= 6 |pages= 523–31 |year= 2005 |pmid= 15189446 |doi= 10.1111/j.1356-9597.2004.00747.x |name-list-format=vanc| author2=Murakumo Y | author3=Kanjo N | display-authors=3 | last4=Akagi | first4=Jun-Ichi | last5=Masutani | first5=Chikahide | last6=Hanaoka | first6=Fumio | last7=Ohmori | first7=Haruo }} | ||
*{{cite journal | author=Li Z | *{{cite journal | author=Tao WA |title=Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry |journal=Nat. Methods |volume=2 |issue= 8 |pages= 591–8 |year= 2005 |pmid= 16094384 |doi= 10.1038/nmeth776 |name-list-format=vanc| author2=Wollscheid B | author3=O'Brien R | display-authors=3 | last4=Eng | first4=Jimmy K | last5=Li | first5=Xiao-jun | last6=Bodenmiller | first6=Bernd | last7=Watts | first7=Julian D | last8=Hood | first8=Leroy | last9=Aebersold | first9=Ruedi }} | ||
*{{cite journal | author=Zhu F | *{{cite journal | author=Olsen JV |title=Global, in vivo, and site-specific phosphorylation dynamics in signaling networks |journal=Cell |volume=127 |issue= 3 |pages= 635–48 |year= 2006 |pmid= 17081983 |doi= 10.1016/j.cell.2006.09.026 |name-list-format=vanc| author2=Blagoev B | author3=Gnad F | display-authors=3 | last4=Macek | first4=Boris | last5=Kumar | first5=Chanchal | last6=Mortensen | first6=Peter | last7=Mann | first7=Matthias }} | ||
*{{cite journal | author=Mungall AJ | |||
*{{cite journal | author=Ohashi E | |||
*{{cite journal | author=Tao WA | |||
*{{cite journal | author=Olsen JV | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | |||
{{gene-6-stub}} |
Latest revision as of 02:26, 27 October 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Protein reversionless 3-like (REV3L) also known as DNA polymerase zeta catalytic subunit (POLZ) is an enzyme that in humans is encoded by the REV3L gene.[1][2][3]
The Rev3 subunit interacts with Rev7 to form Pol ζ, a B family polymerase. Pol ζ lacks 3' to 5' exonuclease activity and is a moderate fidelity polymerase. It cannot add nucleotides across from DNA lesions, yet it can extend from primers with terminal mismatches. This makes Pol ζ very important in translesion synthesis (TLS), because it can act in concert with other TLS polymerases that can add across the lesion to complete the bypass of the lesion. Most polymerases have difficulty extending mismatches because they cannot bind properly to the mismatched DNA. So rather than the cell dying, it can survive albeit with a mutation that may or may not be deleterious, so it is believed that Pol ζ is a driving force of evolution.[citation needed]
Interactions
REV3L has been shown to interact with MAD2L2.[4][5]
References
- ↑ Gibbs PE, McGregor WG, Maher VM, Nisson P, Lawrence CW (Jul 1998). "A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta". Proc Natl Acad Sci U S A. 95 (12): 6876–80. doi:10.1073/pnas.95.12.6876. PMC 22668. PMID 9618506.
- ↑ Morelli C, Mungall AJ, Negrini M, Barbanti-Brodano G, Croce CM (Mar 1999). "Alternative splicing, genomic structure, and fine chromosome localization of REV3L". Cytogenet Cell Genet. 83 (1–2): 18–20. doi:10.1159/000015157. PMID 9925914.
- ↑ "Entrez Gene: REV3L REV3-like, catalytic subunit of DNA polymerase zeta (yeast)".
- ↑ Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishel R (February 2000). "A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2". J. Biol. Chem. 275 (6): 4391–7. doi:10.1074/jbc.275.6.4391. PMID 10660610.
- ↑ Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishel R, Takahashi M (September 2001). "Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7". J. Biol. Chem. 276 (38): 35644–51. doi:10.1074/jbc.M102051200. PMID 11485998.
Further reading
- Xiao W, Lechler T, Chow BL, et al. (1998). "Identification, chromosomal mapping and tissue-specific expression of hREV3 encoding a putative human DNA polymerase zeta". Carcinogenesis. 19 (5): 945–9. doi:10.1093/carcin/19.5.945. PMID 9635887.
- Lin W, Wu X, Wang Z (1999). "A full-length cDNA of hREV3 is predicted to encode DNA polymerase zeta for damage-induced mutagenesis in humans". Mutat. Res. 433 (2): 89–98. doi:10.1016/s0921-8777(98)00065-2. PMID 10102035.
- Karayianni E, Magnanini C, Orphanos V, et al. (2000). "Transcriptional map of chromosome region 6q16→q21". Cytogenet. Cell Genet. 86 (3–4): 263–6. doi:10.1159/000015356. PMID 10575223.
- Murakumo Y, Roth T, Ishii H, et al. (2000). "A human REV7 homolog that interacts with the polymerase zeta catalytic subunit hREV3 and the spindle assembly checkpoint protein hMAD2". J. Biol. Chem. 275 (6): 4391–7. doi:10.1074/jbc.275.6.4391. PMID 10660610.
- Masutani C, Kusumoto R, Iwai S, Hanaoka F (2000). "Mechanisms of accurate translesion synthesis by human DNA polymerase eta". EMBO J. 19 (12): 3100–9. doi:10.1093/emboj/19.12.3100. PMC 203367. PMID 10856253.
- Kawamura K, O-Wang J, Bahar R, et al. (2001). "The error-prone DNA polymerase zeta catalytic subunit (Rev3) gene is ubiquitously expressed in normal and malignant human tissues". Int. J. Oncol. 18 (1): 97–103. doi:10.3892/ijo.18.1.97. PMID 11115544.
- Murakumo Y, Ogura Y, Ishii H, et al. (2001). "Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7". J. Biol. Chem. 276 (38): 35644–51. doi:10.1074/jbc.M102051200. PMID 11485998.
- Li Z, Zhang H, McManus TP, et al. (2003). "hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts". Mutat. Res. 510 (1–2): 71–80. doi:10.1016/S0027-5107(02)00253-1. PMID 12459444.
- Zhu F, Jin CX, Song T, et al. (2003). "Response of human REV3 gene to gastric cancer inducing carcinogen N-methyl-N'-nitro-N-nitrosoguanidine and its role in mutagenesis". World J. Gastroenterol. 9 (5): 888–93. PMID 12717825.
- Mungall AJ, Palmer SA, Sims SK, et al. (2003). "The DNA sequence and analysis of human chromosome 6". Nature. 425 (6960): 805–11. doi:10.1038/nature02055. PMID 14574404.
- Ohashi E, Murakumo Y, Kanjo N, et al. (2005). "Interaction of hREV1 with three human Y-family DNA polymerases". Genes Cells. 9 (6): 523–31. doi:10.1111/j.1356-9597.2004.00747.x. PMID 15189446.
- Tao WA, Wollscheid B, O'Brien R, et al. (2005). "Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry". Nat. Methods. 2 (8): 591–8. doi:10.1038/nmeth776. PMID 16094384.
- Olsen JV, Blagoev B, Gnad F, et al. (2006). "Global, in vivo, and site-specific phosphorylation dynamics in signaling networks". Cell. 127 (3): 635–48. doi:10.1016/j.cell.2006.09.026. PMID 17081983.
This article on a gene on human chromosome 6 is a stub. You can help Wikipedia by expanding it. |