ARPC1B: Difference between revisions

Jump to navigation Jump to search
WikiBot (talk | contribs)
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})
 
m →‎Further reading: task, replaced: International Journal of Cancer. Journal International Du Cancer → International Journal of Cancer using AWB
Line 1: Line 1:
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. -->
{{Infobox_gene}}
{{PBB_Controls
'''Actin-related protein 2/3 complex subunit 1B''' is a [[protein]] that in humans is encoded by the ''ARPC1B'' [[gene]].<ref name="pmid9230079">{{cite journal | vauthors = Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ | title = The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly | journal = The Journal of Cell Biology | volume = 138 | issue = 2 | pages = 375–84 | date = Jul 1997 | pmid = 9230079 | pmc = 2138188 | doi = 10.1083/jcb.138.2.375 }}</ref><ref name="pmid9359840">{{cite journal | vauthors = Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A, Totty NF, Burlingame AL, Hsuan JJ, Segal AW | title = Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins | journal = The Biochemical Journal | volume = 328 ( Pt 1) | issue = 1 | pages = 105–12 | date = Nov 1997 | pmid = 9359840 | pmc = 1218893 | doi = }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10095| accessdate = }}</ref>
| update_page = yes
| require_manual_inspection = no
| update_protein_box = yes
| update_summary = yes
| update_citations = yes
}}


<!-- The GNF_Protein_box is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
== Function ==
{{GNF_Protein_box
| image = PBB_Protein_ARPC1B_image.jpg
| image_source = [[Protein_Data_Bank|PDB]] rendering based on 1k8k.
| PDB = {{PDB2|1k8k}}, {{PDB2|1tyq}}, {{PDB2|1u2v}}, {{PDB2|2p9i}}, {{PDB2|2p9k}}, {{PDB2|2p9l}}, {{PDB2|2p9n}}, {{PDB2|2p9p}}, {{PDB2|2p9s}}, {{PDB2|2p9u}}
| Name = Actin related protein 2/3 complex, subunit 1B, 41kDa
| HGNCid = 704
| Symbol = ARPC1B
| AltSymbols =; ARC41; p40-ARC; p41-ARC
| OMIM = 604223
| ECnumber = 
| Homologene = 4179
| MGIid = 1343142
| Function = {{GNF_GO|id=GO:0005200 |text = structural constituent of cytoskeleton}}
| Component = {{GNF_GO|id=GO:0005885 |text = Arp2/3 protein complex}} {{GNF_GO|id=GO:0016020 |text = membrane}}
| Process = {{GNF_GO|id=GO:0006928 |text = cell motility}} {{GNF_GO|id=GO:0007155 |text = cell adhesion}}
| Orthologs = {{GNF_Ortholog_box
    | Hs_EntrezGene = 10095
    | Hs_Ensembl = 
    | Hs_RefseqProtein = NP_005711
    | Hs_RefseqmRNA = NM_005720
    | Hs_GenLoc_db = 
    | Hs_GenLoc_chr = 
    | Hs_GenLoc_start = 
    | Hs_GenLoc_end = 
    | Hs_Uniprot = 
    | Mm_EntrezGene = 11867
    | Mm_Ensembl = ENSMUSG00000029622
    | Mm_RefseqmRNA = NM_023142
    | Mm_RefseqProtein = NP_075631
    | Mm_GenLoc_db = 
    | Mm_GenLoc_chr = 5
    | Mm_GenLoc_start = 145367783
    | Mm_GenLoc_end = 145381585
    | Mm_Uniprot = Q3TBA2
  }}
}}
'''Actin related protein 2/3 complex, subunit 1B, 41kDa''', also known as '''ARPC1B''', is a human [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10095| accessdate = }}</ref>


<!-- The PBB_Summary template is automatically maintained by Protein Box Bot.  See Template:PBB_Controls to Stop updates. -->
This gene encodes one of seven subunits of the human Arp2/3 protein complex. This subunit is a member of the SOP2 family of proteins and is most similar to the protein encoded by gene ARPC1A. The similarity between these two proteins suggests that they both may function as p41 subunit of the human Arp2/3 complex that facilitates branching of actin filaments in cells. Isoforms of the p41 subunit may adapt the functions of the complex to different cell types or developmental stages.<ref name="entrez"/>  Indeed it has recently been shown that variants of the Arp2/3 complex differ in their ability to promote actin assembly, with  complexes containing ARPC1B and ARPC5L being better at this than those containing ARPC1A and ARPC5.<ref>{{cite web|title=Isoform diversity in the Arp2/3 complex determines actin filament dynamics|url=https://www.nature.com/ncb/journal/v18/n1/full/ncb3286.html}}</ref> The differing functions of ARPC1A and ARPC1B are also evident in the recent discovery of patients with severe or total ARPC1B deficiency, who have platelet and immune system abnormalities yet survive, possibly due to a compensatory up-regulation of ARPC1A expression.<ref>{{cite web|title=Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease|url=https://www.nature.com/articles/ncomms14816}}</ref>
{{PBB_Summary
| section_title =
| summary_text = This gene encodes one of seven subunits of the human Arp2/3 protein complex. This subunit is a member of the SOP2 family of proteins and is most similar to the protein encoded by gene ARPC1A. The similarity between these two proteins suggests that they both may function as p41 subunit of the human Arp2/3 complex that has been implicated in the control of actin polymerization in cells. It is possible that the p41 subunit is involved in assembling and maintaining the structure of the Arp2/3 complex.  Multiple versions of the p41 subunit may adapt the functions of the complex to different cell types or developmental stages.<ref name="entrez">{{cite web | title = Entrez Gene: ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa| url = http://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=10095| accessdate = }}</ref>
}}


==References==
== Interactions ==
{{reflist|2}}
 
==Further reading==
ARPC1B has been shown to [[Protein-protein interaction|interact]] with [[PAK1]].<ref name=pmid14749719>{{cite journal | vauthors = Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R | title = p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate | journal = EMBO Reports | volume = 5 | issue = 2 | pages = 154–60 | date = Feb 2004 | pmid = 14749719 | pmc = 1298990 | doi = 10.1038/sj.embor.7400079 }}</ref>
 
== References ==
{{reflist}}
 
== Further reading ==
{{refbegin | 2}}
{{refbegin | 2}}
{{PBB_Further_reading
* {{cite journal | vauthors = Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA | title = A "double adaptor" method for improved shotgun library construction | journal = Analytical Biochemistry | volume = 236 | issue = 1 | pages = 107–13 | date = Apr 1996 | pmid = 8619474 | doi = 10.1006/abio.1996.0138 }}
| citations =
* {{cite journal | vauthors = Welch MD, Iwamatsu A, Mitchison TJ | title = Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes | journal = Nature | volume = 385 | issue = 6613 | pages = 265–9 | date = Jan 1997 | pmid = 9000076 | doi = 10.1038/385265a0 }}
*{{cite journal | author=Andersson B, Wentland MA, Ricafrente JY, ''et al.'' |title=A "double adaptor" method for improved shotgun library construction. |journal=Anal. Biochem. |volume=236 |issue= 1 |pages= 107-13 |year= 1996 |pmid= 8619474 |doi= 10.1006/abio.1996.0138 }}
* {{cite journal | vauthors = Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA | title = Large-scale concatenation cDNA sequencing | journal = Genome Research | volume = 7 | issue = 4 | pages = 353–8 | date = Apr 1997 | pmid = 9110174 | pmc = 139146 | doi = 10.1101/gr.7.4.353 }}
*{{cite journal | author=Welch MD, Iwamatsu A, Mitchison TJ |title=Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. |journal=Nature |volume=385 |issue= 6613 |pages= 265-9 |year= 1997 |pmid= 9000076 |doi= 10.1038/385265a0 }}
* {{cite journal | vauthors = Rassenti LZ, Kipps TJ | title = Lack of allelic exclusion in B cell chronic lymphocytic leukemia | journal = The Journal of Experimental Medicine | volume = 185 | issue = 8 | pages = 1435–45 | date = Apr 1997 | pmid = 9126924 | pmc = 2196272 | doi = 10.1084/jem.185.8.1435 }}
*{{cite journal | author=Yu W, Andersson B, Worley KC, ''et al.'' |title=Large-scale concatenation cDNA sequencing. |journal=Genome Res. |volume=7 |issue= 4 |pages= 353-8 |year= 1997 |pmid= 9110174 |doi= }}
* {{cite journal | vauthors = Zhao X, Yang Z, Qian M, Zhu X | title = Interactions among subunits of human Arp2/3 complex: p20-Arc as the hub | journal = Biochemical and Biophysical Research Communications | volume = 280 | issue = 2 | pages = 513–7 | date = Jan 2001 | pmid = 11162547 | doi = 10.1006/bbrc.2000.4151 }}
*{{cite journal | author=Rassenti LZ, Kipps TJ |title=Lack of allelic exclusion in B cell chronic lymphocytic leukemia. |journal=J. Exp. Med. |volume=185 |issue= 8 |pages= 1435-45 |year= 1997 |pmid= 9126924 |doi=  }}
* {{cite journal | vauthors = Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, Hanein D | title = Structure of Arp2/3 complex in its activated state and in actin filament branch junctions | journal = Science | volume = 293 | issue = 5539 | pages = 2456–9 | date = Sep 2001 | pmid = 11533442 | doi = 10.1126/science.1063025 }}
*{{cite journal  | author=Welch MD, DePace AH, Verma S, ''et al.'' |title=The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. |journal=J. Cell Biol. |volume=138 |issue= 2 |pages= 375-84 |year= 1997 |pmid= 9230079 |doi= }}
* {{cite journal | vauthors = Robinson RC, Turbedsky K, Kaiser DA, Marchand JB, Higgs HN, Choe S, Pollard TD | title = Crystal structure of Arp2/3 complex | journal = Science | volume = 294 | issue = 5547 | pages = 1679–84 | date = Nov 2001 | pmid = 11721045 | doi = 10.1126/science.1066333 }}
*{{cite journal  | author=Machesky LM, Reeves E, Wientjes F, ''et al.'' |title=Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. |journal=Biochem. J. |volume=328 ( Pt 1) |issue=  |pages= 105-12 |year= 1998 |pmid= 9359840 |doi=  }}
* {{cite journal | vauthors = Gournier H, Goley ED, Niederstrasser H, Trinh T, Welch MD | title = Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity | journal = Molecular Cell | volume = 8 | issue = 5 | pages = 1041–52 | date = Nov 2001 | pmid = 11741539 | doi = 10.1016/S1097-2765(01)00393-8 }}
*{{cite journal | author=Zhao X, Yang Z, Qian M, Zhu X |title=Interactions among subunits of human Arp2/3 complex: p20-Arc as the hub. |journal=Biochem. Biophys. Res. Commun. |volume=280 |issue= 2 |pages= 513-7 |year= 2001 |pmid= 11162547 |doi= 10.1006/bbrc.2000.4151 }}
* {{cite journal | vauthors = Hüfner K, Schell B, Aepfelbacher M, Linder S | title = The acidic regions of WASp and N-WASP can synergize with CDC42Hs and Rac1 to induce filopodia and lamellipodia | journal = FEBS Letters | volume = 514 | issue = 2-3 | pages = 168–74 | date = Mar 2002 | pmid = 11943145 | doi = 10.1016/S0014-5793(02)02358-X }}
*{{cite journal | author=Volkmann N, Amann KJ, Stoilova-McPhie S, ''et al.'' |title=Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. |journal=Science |volume=293 |issue= 5539 |pages= 2456-9 |year= 2001 |pmid= 11533442 |doi= 10.1126/science.1063025 }}
* {{cite journal | vauthors = Kaneda A, Kaminishi M, Nakanishi Y, Sugimura T, Ushijima T | title = Reduced expression of the insulin-induced protein 1 and p41 Arp2/3 complex genes in human gastric cancers | journal = International Journal of Cancer | volume = 100 | issue = 1 | pages = 57–62 | date = Jul 2002 | pmid = 12115587 | doi = 10.1002/ijc.10464 }}
*{{cite journal | author=Robinson RC, Turbedsky K, Kaiser DA, ''et al.'' |title=Crystal structure of Arp2/3 complex. |journal=Science |volume=294 |issue= 5547 |pages= 1679-84 |year= 2001 |pmid= 11721045 |doi= 10.1126/science.1066333 }}
* {{cite journal | vauthors = Gevaert K, Goethals M, Martens L, Van Damme J, Staes A, Thomas GR, Vandekerckhove J | title = Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides | journal = Nature Biotechnology | volume = 21 | issue = 5 | pages = 566–9 | date = May 2003 | pmid = 12665801 | doi = 10.1038/nbt810 }}
*{{cite journal | author=Gournier H, Goley ED, Niederstrasser H, ''et al.'' |title=Reconstitution of human Arp2/3 complex reveals critical roles of individual subunits in complex structure and activity. |journal=Mol. Cell |volume=8 |issue= 5 |pages= 1041-52 |year= 2002 |pmid= 11741539 |doi= }}
* {{cite journal | vauthors = Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R | title = p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate | journal = EMBO Reports | volume = 5 | issue = 2 | pages = 154–60 | date = Feb 2004 | pmid = 14749719 | pmc = 1298990 | doi = 10.1038/sj.embor.7400079 }}
*{{cite journal | author=Hüfner K, Schell B, Aepfelbacher M, Linder S |title=The acidic regions of WASp and N-WASP can synergize with CDC42Hs and Rac1 to induce filopodia and lamellipodia. |journal=FEBS Lett. |volume=514 |issue= 2-3 |pages= 168-74 |year= 2002 |pmid= 11943145 |doi= }}
* {{cite journal | vauthors = Kaneda A, Kaminishi M, Sugimura T, Ushijima T | title = Decreased expression of the seven ARP2/3 complex genes in human gastric cancers | journal = Cancer Letters | volume = 212 | issue = 2 | pages = 203–10 | date = Aug 2004 | pmid = 15279900 | doi = 10.1016/j.canlet.2004.03.020 }}
*{{cite journal | author=Kaneda A, Kaminishi M, Nakanishi Y, ''et al.'' |title=Reduced expression of the insulin-induced protein 1 and p41 Arp2/3 complex genes in human gastric cancers. |journal=Int. J. Cancer |volume=100 |issue= 1 |pages= 57-62 |year= 2002 |pmid= 12115587 |doi= 10.1002/ijc.10464 }}
* {{cite journal | vauthors = Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M | title = Nucleolar proteome dynamics | journal = Nature | volume = 433 | issue = 7021 | pages = 77–83 | date = Jan 2005 | pmid = 15635413 | doi = 10.1038/nature03207 }}
*{{cite journal | author=Strausberg RL, Feingold EA, Grouse LH, ''et al.'' |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899-903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 }}
*{{cite journal  | author=Gevaert K, Goethals M, Martens L, ''et al.'' |title=Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. |journal=Nat. Biotechnol. |volume=21 |issue= 5 |pages= 566-9 |year= 2004 |pmid= 12665801 |doi= 10.1038/nbt810 }}
*{{cite journal | author=Scherer SW, Cheung J, MacDonald JR, ''et al.'' |title=Human chromosome 7: DNA sequence and biology. |journal=Science |volume=300 |issue= 5620 |pages= 767-72 |year= 2003 |pmid= 12690205 |doi= 10.1126/science.1083423 }}
*{{cite journal  | author=Hillier LW, Fulton RS, Fulton LA, ''et al.'' |title=The DNA sequence of human chromosome 7. |journal=Nature |volume=424 |issue= 6945 |pages= 157-64 |year= 2003 |pmid= 12853948 |doi= 10.1038/nature01782 }}
*{{cite journal  | author=Vadlamudi RK, Li F, Barnes CJ, ''et al.'' |title=p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. |journal=EMBO Rep. |volume=5 |issue= 2 |pages= 154-60 |year= 2004 |pmid= 14749719 |doi= 10.1038/sj.embor.7400079 }}
*{{cite journal | author=Kaneda A, Kaminishi M, Sugimura T, Ushijima T |title=Decreased expression of the seven ARP2/3 complex genes in human gastric cancers. |journal=Cancer Lett. |volume=212 |issue= 2 |pages= 203-10 |year= 2004 |pmid= 15279900 |doi= 10.1016/j.canlet.2004.03.020 }}
*{{cite journal | author=Gerhard DS, Wagner L, Feingold EA, ''et al.'' |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121-7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 }}
*{{cite journal  | author=Andersen JS, Lam YW, Leung AK, ''et al.'' |title=Nucleolar proteome dynamics. |journal=Nature |volume=433 |issue= 7021 |pages= 77-83 |year= 2005 |pmid= 15635413 |doi= 10.1038/nature03207 }}
}}
{{refend}}
{{refend}}
== External links ==
* {{UCSC genome browser|ARPC1B}}
* {{UCSC gene details|ARPC1B}}
{{PDB Gallery|geneid=10095}}


{{protein-stub}}
{{protein-stub}}
{{WikiDoc Sources}}

Revision as of 21:54, 25 November 2017

VALUE_ERROR (nil)
Identifiers
Aliases
External IDsGeneCards: [1]
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

n/a

n/a

RefSeq (protein)

n/a

n/a

Location (UCSC)n/an/a
PubMed searchn/an/a
Wikidata
View/Edit Human

Actin-related protein 2/3 complex subunit 1B is a protein that in humans is encoded by the ARPC1B gene.[1][2][3]

Function

This gene encodes one of seven subunits of the human Arp2/3 protein complex. This subunit is a member of the SOP2 family of proteins and is most similar to the protein encoded by gene ARPC1A. The similarity between these two proteins suggests that they both may function as p41 subunit of the human Arp2/3 complex that facilitates branching of actin filaments in cells. Isoforms of the p41 subunit may adapt the functions of the complex to different cell types or developmental stages.[3] Indeed it has recently been shown that variants of the Arp2/3 complex differ in their ability to promote actin assembly, with complexes containing ARPC1B and ARPC5L being better at this than those containing ARPC1A and ARPC5.[4] The differing functions of ARPC1A and ARPC1B are also evident in the recent discovery of patients with severe or total ARPC1B deficiency, who have platelet and immune system abnormalities yet survive, possibly due to a compensatory up-regulation of ARPC1A expression.[5]

Interactions

ARPC1B has been shown to interact with PAK1.[6]

References

  1. Welch MD, DePace AH, Verma S, Iwamatsu A, Mitchison TJ (Jul 1997). "The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly". The Journal of Cell Biology. 138 (2): 375–84. doi:10.1083/jcb.138.2.375. PMC 2138188. PMID 9230079.
  2. Machesky LM, Reeves E, Wientjes F, Mattheyse FJ, Grogan A, Totty NF, Burlingame AL, Hsuan JJ, Segal AW (Nov 1997). "Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins". The Biochemical Journal. 328 ( Pt 1) (1): 105–12. PMC 1218893. PMID 9359840.
  3. 3.0 3.1 "Entrez Gene: ARPC1B actin related protein 2/3 complex, subunit 1B, 41kDa".
  4. "Isoform diversity in the Arp2/3 complex determines actin filament dynamics".
  5. "Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease".
  6. Vadlamudi RK, Li F, Barnes CJ, Bagheri-Yarmand R, Kumar R (Feb 2004). "p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate". EMBO Reports. 5 (2): 154–60. doi:10.1038/sj.embor.7400079. PMC 1298990. PMID 14749719.

Further reading

External links