Exosome component 2: Difference between revisions
Jump to navigation
Jump to search
m (Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}})) |
m (Bot: HTTP→HTTPS (v470)) |
||
Line 1: | Line 1: | ||
< | {{Infobox_gene}} | ||
'''Exosome component 2''', also known as '''EXOSC2''', is a [[protein]] which in humans is encoded by the ''EXOSC2'' [[gene]].<ref name="entrez">{{cite web | title = Entrez Gene: EXOSC2 exosome component 2| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=23404| accessdate = }}</ref><ref name="pmid9390555">{{cite journal |vauthors=Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D | title = The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases | journal = Cell | volume = 91 | issue = 4 | pages = 457–66 |date=November 1997 | pmid = 9390555 | doi = 10.1016/S0092-8674(00)80432-8 | url = }}</ref> | |||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
Mammalian [[messenger RNA|mRNA]]s contain [[AU-rich element]]s (AREs) within their [[three prime untranslated region]]s. In yeast, [[directionality (molecular biology)|3-prime-to-5-prime]] mRNA degradation is mediated by the [[exosome complex|exosome]], a multisubunit particle. EXOSC2 (which is homologous to the yeast Rrp4 protein) is a component of the human exosome.<ref name="pmid11719186">{{cite journal |vauthors=Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M | title = AU binding proteins recruit the exosome to degrade ARE-containing mRNAs | journal = Cell | volume = 107 | issue = 4 | pages = 451–64 |date=November 2001 | pmid = 11719186 | doi = 10.1016/S0092-8674(01)00578-5 | url = }}</ref> | |||
{{ | |||
| | == Interactions == | ||
Exosome component 2 has been shown to [[Protein-protein interaction|interact]] with: | |||
}} | * [[Exosome component 4]],<ref name = pmid12419256/> and | ||
* [[Exosome component 7]].<ref name = pmid12419256>{{cite journal | date = Nov 2002 |vauthors=Raijmakers R, Egberts WV, van Venrooij WJ, Pruijn GJ | title = Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring | journal = J. Mol. Biol. | volume = 323 | issue = 4 | pages = 653–63 | pmid = 12419256 | doi = 10.1016/s0022-2836(02)00947-6}}</ref> | |||
== References == | |||
{{reflist}} | |||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
*{{cite journal |vauthors=Adams MD, Dubnick M, Kerlavage AR |title=Sequence identification of 2,375 human brain genes. |journal=Nature |volume=355 |issue= 6361 |pages= 632–4 |year= 1992 |pmid= 1538749 |doi= 10.1038/355632a0 |display-authors=etal}} | |||
*{{cite journal |vauthors=Morris CM, Heisterkamp N, Groffen J, Fitzgerald PH |title=Entire ABL gene is joined with 5'-BCR in some patients with Philadelphia-positive leukemia. |journal=Blood |volume=78 |issue= 4 |pages= 1078–84 |year= 1991 |pmid= 1868241 |doi= }} | |||
*{{cite journal | | *{{cite journal |vauthors=Zhu QS, Heisterkamp N, Groffen J |title=Characterization of the human ABL promoter regions. |journal=Oncogene |volume=5 |issue= 6 |pages= 885–91 |year= 1990 |pmid= 2163052 |doi= }} | ||
*{{cite journal | | *{{cite journal |vauthors=Soekarman D, van Denderen J, Hoefsloot L |title=A novel variant of the bcr-abl fusion product in Philadelphia chromosome-positive acute lymphoblastic leukemia. |journal=Leukemia |volume=4 |issue= 6 |pages= 397–403 |year= 1990 |pmid= 2193202 |doi= |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Chen SJ, Chen Z, Font MP |title=Structural alterations of the BCR and ABL genes in Ph1 positive acute leukemias with rearrangements in the BCR gene first intron: further evidence implicating Alu sequences in the chromosome translocation. |journal=Nucleic Acids Res. |volume=17 |issue= 19 |pages= 7631–42 |year= 1989 |pmid= 2678002 |doi=10.1093/nar/17.19.7631 | pmc=334872 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Heisterkamp N, Stam K, Groffen J |title=Structural organization of the bcr gene and its role in the Ph' translocation. |journal=Nature |volume=315 |issue= 6022 |pages= 758–61 |year= 1985 |pmid= 2989703 |doi=10.1038/315758a0 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Shtivelman E, Lifshitz B, Gale RP |title=Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. |journal=Cell |volume=47 |issue= 2 |pages= 277–84 |year= 1986 |pmid= 3021337 |doi=10.1016/0092-8674(86)90450-2 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Grosveld G, Verwoerd T, van Agthoven T |title=The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript. |journal=Mol. Cell. Biol. |volume=6 |issue= 2 |pages= 607–16 |year= 1987 |pmid= 3023859 |doi= | pmc=367552 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Bernards A, Rubin CM, Westbrook CA |title=The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukemia. |journal=Mol. Cell. Biol. |volume=7 |issue= 9 |pages= 3231–6 |year= 1987 |pmid= 3313010 |doi= | pmc=367959 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Groffen J, Heisterkamp N, Grosveld F |title=Isolation of human oncogene sequences (v-fes homolog) from a cosmid library. |journal=Science |volume=216 |issue= 4550 |pages= 1136–8 |year= 1982 |pmid= 6281890 |doi=10.1126/science.6281890 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Heisterkamp N, Groffen J, Stephenson JR |title=The human v-abl cellular homologue. |journal=J. Mol. Appl. Genet. |volume=2 |issue= 1 |pages= 57–68 |year= 1983 |pmid= 6302194 |doi= }} | ||
*{{cite journal | | *{{cite journal |vauthors=Heisterkamp N, Stephenson JR, Groffen J |title=Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia. |journal=Nature |volume=306 |issue= 5940 |pages= 239–42 |year= 1984 |pmid= 6316147 |doi=10.1038/306239a0 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Groffen J, Stephenson JR, Heisterkamp N |title=Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. |journal=Cell |volume=36 |issue= 1 |pages= 93–9 |year= 1984 |pmid= 6319012 |doi=10.1016/0092-8674(84)90077-1 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Chissoe SL, Bodenteich A, Wang YF |title=Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. |journal=Genomics |volume=27 |issue= 1 |pages= 67–82 |year= 1995 |pmid= 7665185 |doi=10.1006/geno.1995.1008 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Litz CE, McClure JS, Copenhaver CM, Brunning RD |title=Duplication of small segments within the major breakpoint cluster region in chronic myelogenous leukemia. |journal=Blood |volume=81 |issue= 6 |pages= 1567–72 |year= 1993 |pmid= 8453102 |doi= }} | ||
*{{cite journal | | *{{cite journal |vauthors=Mitchell P, Petfalski E, Tollervey D |title=The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. |journal=Genes Dev. |volume=10 |issue= 4 |pages= 502–13 |year= 1996 |pmid= 8600032 |doi=10.1101/gad.10.4.502 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Mitchell P, Petfalski E, Shevchenko A |title=The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. |journal=Cell |volume=91 |issue= 4 |pages= 457–66 |year= 1997 |pmid= 9390555 |doi=10.1016/S0092-8674(00)80432-8 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Allmang C, Petfalski E, Podtelejnikov A |title=The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. |journal=Genes Dev. |volume=13 |issue= 16 |pages= 2148–58 |year= 1999 |pmid= 10465791 |doi=10.1101/gad.13.16.2148 | pmc=316947 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Brouwer R, Allmang C, Raijmakers R |title=Three novel components of the human exosome. |journal=J. Biol. Chem. |volume=276 |issue= 9 |pages= 6177–84 |year= 2001 |pmid= 11110791 |doi= 10.1074/jbc.M007603200 |display-authors=etal}} | ||
*{{cite journal | | *{{cite journal |vauthors=Chen CY, Gherzi R, Ong SE |title=AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. |journal=Cell |volume=107 |issue= 4 |pages= 451–64 |year= 2002 |pmid= 11719186 |doi=10.1016/S0092-8674(01)00578-5 |display-authors=etal}} | ||
*{{cite journal | | |||
*{{cite journal | | |||
}} | |||
{{refend}} | {{refend}} | ||
{{ | {{PDB Gallery|geneid=23404}} | ||
{{gene-9-stub}} |
Revision as of 01:51, 27 October 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
Exosome component 2, also known as EXOSC2, is a protein which in humans is encoded by the EXOSC2 gene.[1][2]
Function
Mammalian mRNAs contain AU-rich elements (AREs) within their three prime untranslated regions. In yeast, 3-prime-to-5-prime mRNA degradation is mediated by the exosome, a multisubunit particle. EXOSC2 (which is homologous to the yeast Rrp4 protein) is a component of the human exosome.[3]
Interactions
Exosome component 2 has been shown to interact with:
References
- ↑ "Entrez Gene: EXOSC2 exosome component 2".
- ↑ Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (November 1997). "The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases". Cell. 91 (4): 457–66. doi:10.1016/S0092-8674(00)80432-8. PMID 9390555.
- ↑ Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M (November 2001). "AU binding proteins recruit the exosome to degrade ARE-containing mRNAs". Cell. 107 (4): 451–64. doi:10.1016/S0092-8674(01)00578-5. PMID 11719186.
- ↑ 4.0 4.1 Raijmakers R, Egberts WV, van Venrooij WJ, Pruijn GJ (Nov 2002). "Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring". J. Mol. Biol. 323 (4): 653–63. doi:10.1016/s0022-2836(02)00947-6. PMID 12419256.
Further reading
- Adams MD, Dubnick M, Kerlavage AR, et al. (1992). "Sequence identification of 2,375 human brain genes". Nature. 355 (6361): 632–4. doi:10.1038/355632a0. PMID 1538749.
- Morris CM, Heisterkamp N, Groffen J, Fitzgerald PH (1991). "Entire ABL gene is joined with 5'-BCR in some patients with Philadelphia-positive leukemia". Blood. 78 (4): 1078–84. PMID 1868241.
- Zhu QS, Heisterkamp N, Groffen J (1990). "Characterization of the human ABL promoter regions". Oncogene. 5 (6): 885–91. PMID 2163052.
- Soekarman D, van Denderen J, Hoefsloot L, et al. (1990). "A novel variant of the bcr-abl fusion product in Philadelphia chromosome-positive acute lymphoblastic leukemia". Leukemia. 4 (6): 397–403. PMID 2193202.
- Chen SJ, Chen Z, Font MP, et al. (1989). "Structural alterations of the BCR and ABL genes in Ph1 positive acute leukemias with rearrangements in the BCR gene first intron: further evidence implicating Alu sequences in the chromosome translocation". Nucleic Acids Res. 17 (19): 7631–42. doi:10.1093/nar/17.19.7631. PMC 334872. PMID 2678002.
- Heisterkamp N, Stam K, Groffen J, et al. (1985). "Structural organization of the bcr gene and its role in the Ph' translocation". Nature. 315 (6022): 758–61. doi:10.1038/315758a0. PMID 2989703.
- Shtivelman E, Lifshitz B, Gale RP, et al. (1986). "Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene". Cell. 47 (2): 277–84. doi:10.1016/0092-8674(86)90450-2. PMID 3021337.
- Grosveld G, Verwoerd T, van Agthoven T, et al. (1987). "The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript". Mol. Cell. Biol. 6 (2): 607–16. PMC 367552. PMID 3023859.
- Bernards A, Rubin CM, Westbrook CA, et al. (1987). "The first intron in the human c-abl gene is at least 200 kilobases long and is a target for translocations in chronic myelogenous leukemia". Mol. Cell. Biol. 7 (9): 3231–6. PMC 367959. PMID 3313010.
- Groffen J, Heisterkamp N, Grosveld F, et al. (1982). "Isolation of human oncogene sequences (v-fes homolog) from a cosmid library". Science. 216 (4550): 1136–8. doi:10.1126/science.6281890. PMID 6281890.
- Heisterkamp N, Groffen J, Stephenson JR (1983). "The human v-abl cellular homologue". J. Mol. Appl. Genet. 2 (1): 57–68. PMID 6302194.
- Heisterkamp N, Stephenson JR, Groffen J, et al. (1984). "Localization of the c-ab1 oncogene adjacent to a translocation break point in chronic myelocytic leukaemia". Nature. 306 (5940): 239–42. doi:10.1038/306239a0. PMID 6316147.
- Groffen J, Stephenson JR, Heisterkamp N, et al. (1984). "Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22". Cell. 36 (1): 93–9. doi:10.1016/0092-8674(84)90077-1. PMID 6319012.
- Chissoe SL, Bodenteich A, Wang YF, et al. (1995). "Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation". Genomics. 27 (1): 67–82. doi:10.1006/geno.1995.1008. PMID 7665185.
- Litz CE, McClure JS, Copenhaver CM, Brunning RD (1993). "Duplication of small segments within the major breakpoint cluster region in chronic myelogenous leukemia". Blood. 81 (6): 1567–72. PMID 8453102.
- Mitchell P, Petfalski E, Tollervey D (1996). "The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism". Genes Dev. 10 (4): 502–13. doi:10.1101/gad.10.4.502. PMID 8600032.
- Mitchell P, Petfalski E, Shevchenko A, et al. (1997). "The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases". Cell. 91 (4): 457–66. doi:10.1016/S0092-8674(00)80432-8. PMID 9390555.
- Allmang C, Petfalski E, Podtelejnikov A, et al. (1999). "The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases". Genes Dev. 13 (16): 2148–58. doi:10.1101/gad.13.16.2148. PMC 316947. PMID 10465791.
- Brouwer R, Allmang C, Raijmakers R, et al. (2001). "Three novel components of the human exosome". J. Biol. Chem. 276 (9): 6177–84. doi:10.1074/jbc.M007603200. PMID 11110791.
- Chen CY, Gherzi R, Ong SE, et al. (2002). "AU binding proteins recruit the exosome to degrade ARE-containing mRNAs". Cell. 107 (4): 451–64. doi:10.1016/S0092-8674(01)00578-5. PMID 11719186.
This article on a gene on human chromosome 9 is a stub. You can help Wikipedia by expanding it. |