HTATSF1: Difference between revisions
Jump to navigation
Jump to search
m Robot: Automated text replacement (-{{WikiDoc Cardiology Network Infobox}} +, -<references /> +{{reflist|2}}, -{{reflist}} +{{reflist|2}}) |
m Bot: HTTP→HTTPS |
||
Line 1: | Line 1: | ||
< | {{Use dmy dates|date=April 2013}} | ||
{{ | {{Infobox_gene}} | ||
| | '''HIV Tat-specific factor 1''' is a [[protein]] that in humans is encoded by the ''HTATSF1'' [[gene]].<ref name="pmid8849451">{{cite journal |vauthors=Zhou Q, Sharp PA | title = Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat | journal = Science | volume = 274 | issue = 5287 | pages = 605–10 |date=Nov 1996 | pmid = 8849451 | pmc = | doi =10.1126/science.274.5287.605 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: HTATSF1 HIV-1 Tat specific factor 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=27336| accessdate = }}</ref> | ||
| | |||
| | |||
}} | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. See Template:PBB_Controls to Stop updates. --> | |||
<!-- The PBB_Summary template is automatically maintained by Protein Box Bot. | |||
{{PBB_Summary | {{PBB_Summary | ||
| section_title = | | section_title = | ||
| summary_text = Whereas most DNA sequence-specific transcription factors increase the rate of initiation and interact with enhancer or promoter DNA, human immunodeficiency virus-1 (HIV-1) Tat predominantly stimulates elongation and interacts with the trans-acting responsive (TAR) RNA element. Tat is essential for HIV replication.[supplied by OMIM]<ref name="entrez" | | summary_text = Whereas most DNA sequence-specific transcription factors increase the rate of initiation and interact with enhancer or promoter DNA, human immunodeficiency virus-1 (HIV-1) Tat predominantly stimulates elongation and interacts with the trans-acting responsive (TAR) RNA element. Tat is essential for HIV replication.[supplied by OMIM]<ref name="entrez"/> | ||
}} | }} | ||
==Interactions== | |||
HTATSF1 has been shown to [[Protein-protein interaction|interact]] with [[SUPT5H]]<ref name=pmid10454543>{{cite journal |last=Kim |first=J B |authorlink= |author2=Yamaguchi Y |author3=Wada T |author4=Handa H |author5=Sharp P A |date=Sep 1999 |title=Tat-SF1 protein associates with RAP30 and human SPT5 proteins |journal=Mol. Cell. Biol. |volume=19 |issue=9 |pages=5960–8 |publisher= |location = UNITED STATES| issn = 0270-7306| pmid = 10454543 | bibcode = | oclc =| id = | url = | language = | format = | accessdate = | laysummary = | laysource = | laydate = | quote = |pmc=84462 | doi=10.1128/mcb.19.9.5960}}</ref> and [[GTF2F2]].<ref name=pmid10454543/> | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
{{PBB_Further_reading | {{PBB_Further_reading | ||
| citations = | | citations = | ||
*{{cite journal | | *{{cite journal |vauthors=Maruyama K, Sugano S |title=Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. |journal=Gene |volume=138 |issue= 1–2 |pages= 171–4 |year= 1994 |pmid= 8125298 |doi=10.1016/0378-1119(94)90802-8 }} | ||
*{{cite journal | *{{cite journal |vauthors=Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, etal |title=Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library |journal=Gene |volume=200 |issue= 1–2 |pages= 149–56 |year= 1997 |pmid= 9373149 |doi=10.1016/S0378-1119(97)00411-3 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Zhou Q, Chen D, Pierstorff E, Luo K |title=Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages |journal=EMBO J. |volume=17 |issue= 13 |pages= 3681–91 |year= 1998 |pmid= 9649438 |doi= 10.1093/emboj/17.13.3681 | pmc=1170704 }} | ||
*{{cite journal | *{{cite journal |vauthors=Yan D, Perriman R, Igel H, etal |title=CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif |journal=Mol. Cell. Biol. |volume=18 |issue= 9 |pages= 5000–9 |year= 1998 |pmid= 9710584 |doi= | pmc=109085 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Li XY, Green MR |title=The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor |journal=Genes Dev. |volume=12 |issue= 19 |pages= 2992–6 |year= 1998 |pmid= 9765201 |doi=10.1101/gad.12.19.2992 | pmc=317190 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Parada CA, Roeder RG |title=A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription |journal=EMBO J. |volume=18 |issue= 13 |pages= 3688–701 |year= 1999 |pmid= 10393184 |doi= 10.1093/emboj/18.13.3688 | pmc=1171446 }} | ||
*{{cite journal | *{{cite journal |vauthors=Kim JB, Yamaguchi Y, Wada T, etal |title=Tat-SF1 protein associates with RAP30 and human SPT5 proteins |journal=Mol. Cell. Biol. |volume=19 |issue= 9 |pages= 5960–8 |year= 1999 |pmid= 10454543 |doi= 10.1128/mcb.19.9.5960| pmc=84462 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Fong YW, Zhou Q |title=Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter |journal=Mol. Cell. Biol. |volume=20 |issue= 16 |pages= 5897–907 |year= 2000 |pmid= 10913173 |doi=10.1128/MCB.20.16.5897-5907.2000 | pmc=86067 }} | ||
*{{cite journal | *{{cite journal |vauthors=Suñé C, Goldstrohm AC, Peng J, etal |title=An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation |journal=Virology |volume=274 |issue= 2 |pages= 356–66 |year= 2000 |pmid= 10964778 |doi= 10.1006/viro.2000.0480 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Simmons A, Aluvihare V, McMichael A |title=Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators |journal=Immunity |volume=14 |issue= 6 |pages= 763–77 |year= 2001 |pmid= 11420046 |doi=10.1016/S1074-7613(01)00158-3 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Fong YW, Zhou Q |title=Stimulatory effect of splicing factors on transcriptional elongation |journal=Nature |volume=414 |issue= 6866 |pages= 929–33 |year= 2002 |pmid= 11780068 |doi= 10.1038/414929a }} | ||
*{{cite journal | *{{cite journal |vauthors=Strausberg RL, Feingold EA, Grouse LH, etal |title=Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=99 |issue= 26 |pages= 16899–903 |year= 2003 |pmid= 12477932 |doi= 10.1073/pnas.242603899 | pmc=139241 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Zhou BY, He JJ |title=Proliferation inhibition of astrocytes, neurons, and non-glial cells by intracellularly expressed human immunodeficiency virus type 1 (HIV-1) Tat protein |journal=Neurosci. Lett. |volume=359 |issue= 3 |pages= 155–8 |year= 2004 |pmid= 15050687 |doi= 10.1016/j.neulet.2004.02.012 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ballif BA, Villén J, Beausoleil SA, etal |title=Phosphoproteomic analysis of the developing mouse brain |journal=Mol. Cell. Proteomics |volume=3 |issue= 11 |pages= 1093–101 |year= 2005 |pmid= 15345747 |doi= 10.1074/mcp.M400085-MCP200 }} | ||
*{{cite journal | | *{{cite journal |vauthors=Smith MJ, Kulkarni S, Pawson T |title=FF domains of CA150 bind transcription and splicing factors through multiple weak interactions |journal=Mol. Cell. Biol. |volume=24 |issue= 21 |pages= 9274–85 |year= 2004 |pmid= 15485897 |doi= 10.1128/MCB.24.21.9274-9285.2004 | pmc=522232 }} | ||
*{{cite journal | *{{cite journal |vauthors=Gerhard DS, Wagner L, Feingold EA, etal |title=The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC) |journal=Genome Res. |volume=14 |issue= 10B |pages= 2121–7 |year= 2004 |pmid= 15489334 |doi= 10.1101/gr.2596504 | pmc=528928 }} | ||
*{{cite journal | *{{cite journal |vauthors=Zhou M, Deng L, Lacoste V, etal |title=Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription |journal=J. Virol. |volume=78 |issue= 24 |pages= 13522–33 |year= 2004 |pmid= 15564463 |doi= 10.1128/JVI.78.24.13522-13533.2004 | pmc=533906 }} | ||
*{{cite journal | *{{cite journal |vauthors=Ross MT, Grafham DV, Coffey AJ, etal |title=The DNA sequence of the human X chromosome |journal=Nature |volume=434 |issue= 7031 |pages= 325–37 |year= 2005 |pmid= 15772651 |doi= 10.1038/nature03440 | pmc=2665286 }} | ||
*{{cite journal | *{{cite journal |vauthors=Missé D, Gajardo J, Oblet C, etal |title=Soluble HIV-1 gp120 enhances HIV-1 replication in non-dividing CD4+ T cells, mediated via cell signaling and Tat cofactor overexpression |journal=AIDS |volume=19 |issue= 9 |pages= 897–905 |year= 2005 |pmid= 15905670 |doi=10.1097/01.aids.0000171403.07995.92 }} | ||
}} | }} | ||
{{refend}} | {{refend}} | ||
{{PDB Gallery|geneid=27336}} | |||
<!-- The PBB_Controls template provides controls for Protein Box Bot, please see Template:PBB_Controls for details. --> | |||
{{PBB_Controls | |||
| update_page = yes | |||
| require_manual_inspection = no | |||
| update_protein_box = yes | |||
| update_summary = yes | |||
| update_citations = yes | |||
}} | |||
{{ | {{gene-X-stub}} | ||
Revision as of 14:07, 31 August 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
HIV Tat-specific factor 1 is a protein that in humans is encoded by the HTATSF1 gene.[1][2]
Whereas most DNA sequence-specific transcription factors increase the rate of initiation and interact with enhancer or promoter DNA, human immunodeficiency virus-1 (HIV-1) Tat predominantly stimulates elongation and interacts with the trans-acting responsive (TAR) RNA element. Tat is essential for HIV replication.[supplied by OMIM][2]
Interactions
HTATSF1 has been shown to interact with SUPT5H[3] and GTF2F2.[3]
References
- ↑ Zhou Q, Sharp PA (Nov 1996). "Tat-SF1: cofactor for stimulation of transcriptional elongation by HIV-1 Tat". Science. 274 (5287): 605–10. doi:10.1126/science.274.5287.605. PMID 8849451.
- ↑ 2.0 2.1 "Entrez Gene: HTATSF1 HIV-1 Tat specific factor 1".
- ↑ 3.0 3.1 Kim, J B; Yamaguchi Y; Wada T; Handa H; Sharp P A (Sep 1999). "Tat-SF1 protein associates with RAP30 and human SPT5 proteins". Mol. Cell. Biol. UNITED STATES. 19 (9): 5960–8. doi:10.1128/mcb.19.9.5960. ISSN 0270-7306. PMC 84462. PMID 10454543.
Further reading
- Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
- Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
- Zhou Q, Chen D, Pierstorff E, Luo K (1998). "Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages". EMBO J. 17 (13): 3681–91. doi:10.1093/emboj/17.13.3681. PMC 1170704. PMID 9649438.
- Yan D, Perriman R, Igel H, et al. (1998). "CUS2, a yeast homolog of human Tat-SF1, rescues function of misfolded U2 through an unusual RNA recognition motif". Mol. Cell. Biol. 18 (9): 5000–9. PMC 109085. PMID 9710584.
- Li XY, Green MR (1998). "The HIV-1 Tat cellular coactivator Tat-SF1 is a general transcription elongation factor". Genes Dev. 12 (19): 2992–6. doi:10.1101/gad.12.19.2992. PMC 317190. PMID 9765201.
- Parada CA, Roeder RG (1999). "A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription". EMBO J. 18 (13): 3688–701. doi:10.1093/emboj/18.13.3688. PMC 1171446. PMID 10393184.
- Kim JB, Yamaguchi Y, Wada T, et al. (1999). "Tat-SF1 protein associates with RAP30 and human SPT5 proteins". Mol. Cell. Biol. 19 (9): 5960–8. doi:10.1128/mcb.19.9.5960. PMC 84462. PMID 10454543.
- Fong YW, Zhou Q (2000). "Relief of two built-In autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter". Mol. Cell. Biol. 20 (16): 5897–907. doi:10.1128/MCB.20.16.5897-5907.2000. PMC 86067. PMID 10913173.
- Suñé C, Goldstrohm AC, Peng J, et al. (2000). "An in vitro transcription system that recapitulates equine infectious anemia virus tat-mediated inhibition of human immunodeficiency virus type 1 Tat activity demonstrates a role for positive transcription elongation factor b and associated proteins in the mechanism of Tat activation". Virology. 274 (2): 356–66. doi:10.1006/viro.2000.0480. PMID 10964778.
- Simmons A, Aluvihare V, McMichael A (2001). "Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators". Immunity. 14 (6): 763–77. doi:10.1016/S1074-7613(01)00158-3. PMID 11420046.
- Fong YW, Zhou Q (2002). "Stimulatory effect of splicing factors on transcriptional elongation". Nature. 414 (6866): 929–33. doi:10.1038/414929a. PMID 11780068.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Zhou BY, He JJ (2004). "Proliferation inhibition of astrocytes, neurons, and non-glial cells by intracellularly expressed human immunodeficiency virus type 1 (HIV-1) Tat protein". Neurosci. Lett. 359 (3): 155–8. doi:10.1016/j.neulet.2004.02.012. PMID 15050687.
- Ballif BA, Villén J, Beausoleil SA, et al. (2005). "Phosphoproteomic analysis of the developing mouse brain". Mol. Cell. Proteomics. 3 (11): 1093–101. doi:10.1074/mcp.M400085-MCP200. PMID 15345747.
- Smith MJ, Kulkarni S, Pawson T (2004). "FF domains of CA150 bind transcription and splicing factors through multiple weak interactions". Mol. Cell. Biol. 24 (21): 9274–85. doi:10.1128/MCB.24.21.9274-9285.2004. PMC 522232. PMID 15485897.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Zhou M, Deng L, Lacoste V, et al. (2004). "Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription". J. Virol. 78 (24): 13522–33. doi:10.1128/JVI.78.24.13522-13533.2004. PMC 533906. PMID 15564463.
- Ross MT, Grafham DV, Coffey AJ, et al. (2005). "The DNA sequence of the human X chromosome". Nature. 434 (7031): 325–37. doi:10.1038/nature03440. PMC 2665286. PMID 15772651.
- Missé D, Gajardo J, Oblet C, et al. (2005). "Soluble HIV-1 gp120 enhances HIV-1 replication in non-dividing CD4+ T cells, mediated via cell signaling and Tat cofactor overexpression". AIDS. 19 (9): 897–905. doi:10.1097/01.aids.0000171403.07995.92. PMID 15905670.
This article on a gene on the human X chromosome and/or its associated protein is a stub. You can help Wikipedia by expanding it. |