Hyperventilation: Difference between revisions
Usama Talib (talk | contribs) |
Usama Talib (talk | contribs) |
||
Line 260: | Line 260: | ||
== Mechanism == | == Mechanism == | ||
=== Physiology of breathing: === | |||
* Under normal conditions, breathing is regulated by the central nervous system (CNS). | * Under normal conditions, breathing is regulated by the central nervous system (CNS). | ||
Line 266: | Line 268: | ||
* As the CO2 and O2 gas exchange mechanism is simultaneous and continuous, any condition resulting in increased high [[carbon dioxide]] concentration primarily signals a low oxygen concentration. | * As the CO2 and O2 gas exchange mechanism is simultaneous and continuous, any condition resulting in increased high [[carbon dioxide]] concentration primarily signals a low oxygen concentration. | ||
* In addition, metabolism in the body uses O2 and results in the production of CO2 as a byproduct. | * In addition, metabolism in the body uses O2 and results in the production of CO2 as a byproduct. | ||
=== Hyperventilation: === | |||
Under physiologic conditions, the volume of alveolar gas is in equilibrium with the arterial gas. | Under physiologic conditions, the volume of alveolar gas is in equilibrium with the arterial gas. | ||
* With each breath approximately 10% of the alveolar gas is replaced with atmospheric air. | * With each breath approximately 10% of the alveolar gas is replaced with atmospheric air. | ||
* The rate and depth of breathing determines the level of CO2 in the body. | * The rate and depth of breathing determines the level of CO2 in the body. | ||
* A rapid and deep breath will lead to a better alveolar - atmospheric gas exchange leading to low CO2 levels. | * A rapid and deep breath will lead to a better alveolar - atmospheric gas exchange leading to low CO2 levels. | ||
* It is to be noted that atmospheric air has 21% O2 content as compared to just 0.03% of CO2 content | * It is to be noted that atmospheric air has 21% O2 content as compared to just 0.03% of CO2 content. | ||
* This results in low CO2 content ([[hypocapnia]]) with each rapid and deep breath. | |||
Majority of the CO2 in human body is stored as [[carbonic acid]] and is a major factor in determining the acidity of the body. Loss of CO2 results in blood becoming more [[alkaline]] and increase in blood pH. In the normal person, the resultant [[alkalosis]] would automatically be countered by reduced breathing except when the neural control is altered or disturbed. | Majority of the CO2 in human body is stored as [[carbonic acid]] and is a major factor in determining the acidity of the body. Loss of CO2 results in blood becoming more [[alkaline]] and increase in blood pH. In the normal person, the resultant [[alkalosis]] would automatically be countered by reduced breathing except when the neural control is altered or disturbed. | ||
Revision as of 17:25, 10 March 2018
WikiDoc Resources for Hyperventilation |
Articles |
---|
Most recent articles on Hyperventilation Most cited articles on Hyperventilation |
Media |
Powerpoint slides on Hyperventilation |
Evidence Based Medicine |
Clinical Trials |
Ongoing Trials on Hyperventilation at Clinical Trials.gov Trial results on Hyperventilation Clinical Trials on Hyperventilation at Google
|
Guidelines / Policies / Govt |
US National Guidelines Clearinghouse on Hyperventilation NICE Guidance on Hyperventilation
|
Books |
News |
Commentary |
Definitions |
Patient Resources / Community |
Patient resources on Hyperventilation Discussion groups on Hyperventilation Patient Handouts on Hyperventilation Directions to Hospitals Treating Hyperventilation Risk calculators and risk factors for Hyperventilation
|
Healthcare Provider Resources |
Causes & Risk Factors for Hyperventilation |
Continuing Medical Education (CME) |
International |
|
Business |
Experimental / Informatics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Jyostna Chouturi, M.B.B.S [2], Amresh Kumar MD [3], Vindhya BellamKonda, M.B.B.S [4]
Overview
Hyperventilation is the state of rapid breathing which results in the reduction in carbon dioxide levels (below normal) thereby leading to hypocapnia.[1] During rapid breathing, the body loses more carbon dioxide (CO2) than it can produce resulting in net reduction of CO2 levels. This state of rapid/faster breathing is most commonly seen in stress and anxiety and termed as hyperventilation syndrome. Kussmaul breathing is also a type of hyperventilation and done to reduce the acidity of body as seen in metabolic acidosis. Hyperventilation may also be voluntarily manifested following episodes of rapid deep breathing. The symptoms of hyperventilation are variable. Some patients are completely asymptomatic while others may present with minimal symptoms such as headache and numbness or tingling in the hands, feet and lips. More severe symptoms include dizziness, lightheadedness, and fainting. Some patient also report having chest pain and slurred speech particularly when accompanied by the Valsalva maneuver. Voluntary deep breathing and induction of hyperventilation is a common practice among young individuals to attain focus and adrenaline rush. Other similar terms that are completely different from hyperventilation include hyperpnea and tachypnea.
Hyperpnea is commonly seen with exercise or any major physical activity as well as in response to hypoxic states. In these conditions the energy demand of the body either goes up or is not adequately met. To meet this energy deficit, the body increases the depth and rate of breathing which is known as hyperpnea. Other common examples of hyperpneic state include sepsis, anemia, and individuals living at high altitudes. Tachypnea is derived from a Greek word which means "rapid breathing". Tachypnea means rapid and shallow breathing and is also seen with exercise as a compensatory mechanism to increase the oxygen content of the body.
Causes
Following are the various causes of hyperventilation.
Life-Threatening Causes
Common Causes
- Acute altitude sickness
- Anxiety
- Ascites
- Asthma
- Chronic obstructive pulmonary disease
- Congestive heart failure
- Drugs such as:
- Encephalitis
- Exercise
- Fever
- Graves' disease
- Head injury
- Hyperthyroidism
- Meningitis
- Panic disorder
- Pneumonia
- Pneumothorax
- Pregnancy
- Pulmonary edema
- Pulmonary embolus
- Pulmonary fibrosis
- Stress
- Stroke
Causes by Organ System
Causes in Alphabetical Order
Mechanism
Physiology of breathing:
- Under normal conditions, breathing is regulated by the central nervous system (CNS).
- The CNS regulates the depth and frequency of each breath to maintain normal levels of carbon dioxide (CO2) and oxygen (O2) in the blood and tissues.
- The CNS measures the amount of CO2 in the body to regulate the breathing process.
- As the CO2 and O2 gas exchange mechanism is simultaneous and continuous, any condition resulting in increased high carbon dioxide concentration primarily signals a low oxygen concentration.
- In addition, metabolism in the body uses O2 and results in the production of CO2 as a byproduct.
Hyperventilation:
Under physiologic conditions, the volume of alveolar gas is in equilibrium with the arterial gas.
- With each breath approximately 10% of the alveolar gas is replaced with atmospheric air.
- The rate and depth of breathing determines the level of CO2 in the body.
- A rapid and deep breath will lead to a better alveolar - atmospheric gas exchange leading to low CO2 levels.
- It is to be noted that atmospheric air has 21% O2 content as compared to just 0.03% of CO2 content.
- This results in low CO2 content (hypocapnia) with each rapid and deep breath.
Majority of the CO2 in human body is stored as carbonic acid and is a major factor in determining the acidity of the body. Loss of CO2 results in blood becoming more alkaline and increase in blood pH. In the normal person, the resultant alkalosis would automatically be countered by reduced breathing except when the neural control is altered or disturbed.
Conditions causing high CO2 levels (hypercapnia) results in the body assuming that the O2 levels are low. As a result, to increase the O2 supply the blood vessels in the brain dilate. Alternatively, hypocapnia results in constriction of brain's blood vessels causing diminished blood flow leading to lightheadedness. Thus, though it seems counterintuitive, breathing too much can result in a decrease in the oxygen supply to the brain. Physicians often artificially induce hyperventilation after head injury to reduce the intracranial pressure, although the treatment has potential risks.[2]
The level of serum calcium is also regulated by the acid-base balance in the body. Ionised calcium is bound by the negatively charged albumin. Alkaline promoting conditions lead to reflex respiratory hypoventilation and may lead to decreased serum calcium level. Increased Co2 levels tends to bind more of ionised calcium which ultimately results in low calcium levels.
Differentiating hyperventilation from other diseases:
Abbreviations: ABG (arterial blood gas); ACE (angiotensin converting enzyme); βhCG (beta human chorionic gonadotropin); BMP (basic metabolic panel); BNP (brain natriuretic peptide); CBC (complete blood count); COPD (chronic obstructive pulmonary disease); CSF (cerebrospinal fluid); CXR (chest X-ray); CT (computed tomography); DLCO (diffusing capacity of the lung for carbon monoxide); DOE (dyspnea on exercise); ECG (electrocardiogram); FEF (forced expiratory flow rate); FEV1 (forced expiratory volume); FT4 (free T4); FVC (forced vital capacity); HRCT (high resolution computed tomography); JVD (jugular vein distention); LFTs (liver function tests); MCV (mean corpuscular volume); MEN (multiple endocrine neoplasia); MRI (magnetic resonance imaging); P2 (pulmonic heart sound); Plt (platelet); PT (prothrombin time); RBC (red blood cell); RV (residual volume); SIADH (syndrome of inappropriate antidiuretic hormone); S3 ( third heart sound); S4 (fourth heart sound); T3 ((Triiodothyronine); TLC (total lung capacity); TSH (thyroid stimulating hormone); VC (vital capacity); VMA(vanillylmandelic acid); Vt (tidal volume); WBC (white blood cell);
References
- ↑ Kenneth Baillie and Alistair Simpson. [ttp://www.altitude.org/calculators/oxygencalculator/oxygencalculator.htm "Hyperventilation calculator"]. Apex (Altitude Physiology EXpeditions). Retrieved 2006-08-10. - Online interactive oxygen delivery calculator that mimicks hyperventilation
- ↑ Stocchetti N, Maas AI, Chieregato A, van der Plas AA (2005). "Hyperventilation in head injury: a review". Chest. 127 (5): 1812–27. doi:10.1378/chest.127.5.1812. PMID 15888864.
- ↑ Currie GP, Alluri R, Christie GL, Legge JS (2007). "Pneumothorax: an update". Postgrad Med J. 83 (981): 461–5. doi:10.1136/pgmj.2007.056978. PMC 2600088. PMID 17621614.
- ↑ Bĕlohlávek J, Dytrych V, Linhart A (2013). "Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism". Exp Clin Cardiol. 18 (2): 129–38. PMC 3718593. PMID 23940438.
- ↑ Simonetti AF, Viasus D, Garcia-Vidal C, Carratalà J (2014). "Management of community-acquired pneumonia in older adults". Ther Adv Infect Dis. 2 (1): 3–16. doi:10.1177/2049936113518041. PMC 4072047. PMID 25165554.
- ↑ Qureshi H, Sharafkhaneh A, Hanania NA (2014). "Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications". Ther Adv Chronic Dis. 5 (5): 212–27. doi:10.1177/2040622314532862. PMC 4131503. PMID 25177479.
- ↑ Bohadana A, Izbicki G, Kraman SS (2014). "Fundamentals of lung auscultation". N Engl J Med. 370 (8): 744–51. doi:10.1056/NEJMra1302901. PMID 24552321.
- ↑ Spicknall KE, Zirwas MJ, English JC (2005). "Clubbing: an update on diagnosis, differential diagnosis, pathophysiology, and clinical relevance". J Am Acad Dermatol. 52 (6): 1020–8. doi:10.1016/j.jaad.2005.01.006. PMID 15928621.
- ↑ Vodoz JF, Cottin V, Glérant JC, Derumeaux G, Khouatra C, Blanchet AS; et al. (2009). "Right-to-left shunt with hypoxemia in pulmonary hypertension". BMC Cardiovasc Disord. 9: 15. doi:10.1186/1471-2261-9-15. PMC 2671488. PMID 19335916.
- ↑ Darras KE, Roston AT, Yewchuk LK (2015). "Imaging Acute Airway Obstruction in Infants and Children". Radiographics. 35 (7): 2064–79. doi:10.1148/rg.2015150096. PMID 26495798.
- ↑ Basnyat B, Murdoch DR (2003). "High-altitude illness". Lancet. 361 (9373): 1967–74. doi:10.1016/S0140-6736(03)13591-X. PMID 12801752.
- ↑ Schoene RB (2008). "Illnesses at high altitude". Chest. 134 (2): 402–416. doi:10.1378/chest.07-0561. PMID 18682459.
- ↑ Stream JO, Grissom CK (2008). "Update on high-altitude pulmonary edema: pathogenesis, prevention, and treatment". Wilderness Environ Med. 19 (4): 293–303. doi:10.1580/07-WEME-REV-173.1. PMID 19099331.
- ↑ 14.0 14.1 Bruyninckx R, Aertgeerts B, Bruyninckx P, Buntinx F (2008). "Signs and symptoms in diagnosing acute myocardial infarction and acute coronary syndrome: a diagnostic meta-analysis". Br J Gen Pract. 58 (547): 105–11. doi:10.3399/bjgp08X277014. PMC 2233977. PMID 18307844.
- ↑ Gaggin, Hanna K.; Januzzi, James L. (2013). "Biomarkers and diagnostics in heart failure". Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 1832 (12): 2442–2450. doi:10.1016/j.bbadis.2012.12.014. ISSN 0925-4439.
- ↑ Churpek MM, Zadravecz FJ, Winslow C, Howell MD, Edelson DP (2015). "Incidence and Prognostic Value of the Systemic Inflammatory Response Syndrome and Organ Dysfunctions in Ward Patients". Am J Respir Crit Care Med. 192 (8): 958–64. doi:10.1164/rccm.201502-0275OC. PMC 4642209. PMID 26158402.
- ↑ Kelly AM, Kyle E, McAlpine R (2002). "Venous pCO(2) and pH can be used to screen for significant hypercarbia in emergency patients with acute respiratory disease". J Emerg Med. 22 (1): 15–9. PMID 11809551.
- ↑ Westerberg DP (2013). "Diabetic ketoacidosis: evaluation and treatment". Am Fam Physician. 87 (5): 337–46. PMID 23547550.
- ↑ Tohme JF, Bilezikian JP (1993). "Hypocalcemic emergencies". Endocrinol Metab Clin North Am. 22 (2): 363–75. PMID 8325292.
- ↑ Cooper MS, Gittoes NJ (2008). "Diagnosis and management of hypocalcaemia". BMJ. 336 (7656): 1298–302. doi:10.1136/bmj.39582.589433.BE. PMC 2413335. PMID 18535072.
- ↑ Hepburn DA, Deary IJ, Frier BM, Patrick AW, Quinn JD, Fisher BM (1991). "Symptoms of acute insulin-induced hypoglycemia in humans with and without IDDM. Factor-analysis approach". Diabetes Care. 14 (11): 949–57. PMID 1797507.
- ↑ Towler DA, Havlin CE, Craft S, Cryer P (1993). "Mechanism of awareness of hypoglycemia. Perception of neurogenic (predominantly cholinergic) rather than neuroglycopenic symptoms". Diabetes. 42 (12): 1791–8. PMID 8243825.
- ↑ Iglesias P, Acosta M, Sánchez R, Fernández-Reyes MJ, Mon C, Díez JJ (2005). "Ambulatory blood pressure monitoring in patients with hyperthyroidism before and after control of thyroid function". Clin Endocrinol (Oxf). 63 (1): 66–72. doi:10.1111/j.1365-2265.2005.02301.x. PMID 15963064.
- ↑ Forfar JC, Muir AL, Sawers SA, Toft AD (1982). "Abnormal left ventricular function in hyperthyroidism: evidence for a possible reversible cardiomyopathy". N Engl J Med. 307 (19): 1165–70. doi:10.1056/NEJM198211043071901. PMID 7121544.
- ↑ Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M; et al. (2004). "Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations". JAMA. 292 (8): 943–51. doi:10.1001/jama.292.8.943. PMID 15328326.
- ↑ Bravo EL (1991). "Pheochromocytoma: new concepts and future trends". Kidney Int. 40 (3): 544–56. PMID 1787652.
- ↑ Forsyth PA, Posner JB (1993). "Headaches in patients with brain tumors: a study of 111 patients". Neurology. 43 (9): 1678–83. PMID 8414011.
- ↑ Valentinis L, Tuniz F, Valent F, Mucchiut M, Little D, Skrap M; et al. (2010). "Headache attributed to intracranial tumours: a prospective cohort study". Cephalalgia. 30 (4): 389–98. doi:10.1111/j.1468-2982.2009.01970.x. PMID 19673912.
- ↑ Taylor CB (2006). "Panic disorder". BMJ. 332 (7547): 951–5. doi:10.1136/bmj.332.7547.951. PMC 1444835. PMID 16627512.
- ↑ Lee SY, Chien DK, Huang CH, Shih SC, Lee WC, Chang WH (2017). "Dyspnea in pregnancy". Taiwan J Obstet Gynecol. 56 (4): 432–436. doi:10.1016/j.tjog.2017.04.035. PMID 28805596.
- ↑ Lee WM (1993). "Acute liver failure". N Engl J Med. 329 (25): 1862–72. doi:10.1056/NEJM199312163292508. PMID 8305063.
- ↑ Gill RQ, Sterling RK (2001). "Acute liver failure". J Clin Gastroenterol. 33 (3): 191–8. PMID 11500606.
- ↑ Askim Å, Mehl A, Paulsen J, DeWan AT, Vestrheim DF, Åsvold BO; et al. (2016). "Epidemiology and outcome of sepsis in adult patients with Streptococcus pneumoniae infection in a Norwegian county 1993-2011: an observational study". BMC Infect Dis. 16: 223. doi:10.1186/s12879-016-1553-8. PMC 4877975. PMID 27216810.
See also
- Hypoventilation, too shallow or too slow breathing
- Control of respiration
- Respiratory alkalosis
- Shallow water blackout, the role of hyperventilation in some drowning incidents
Template:Skin and subcutaneous tissue symptoms and signs Template:Nervous and musculoskeletal system symptoms and signs Template:Urinary system symptoms and signs Template:Cognition, perception, emotional state and behaviour symptoms and signs Template:Speech and voice symptoms and signs Template:General symptoms and signs