Down syndrome pathophysiology: Difference between revisions
Line 45: | Line 45: | ||
* Patients with DS have learning and memory problems and exhibit differences in brain structure compared to the euploid population.<ref name="pmid16967345">{{cite journal |vauthors=Vicari S, Carlesimo GA |title=Short-term memory deficits are not uniform in Down and Williams syndromes |journal=Neuropsychol Rev |volume=16 |issue=2 |pages=87–94 |date=June 2006 |pmid=16967345 |doi=10.1007/s11065-006-9008-4 |url=}}</ref><ref name="pmid8981379">{{cite journal |vauthors=Carlesimo GA, Marotta L, Vicari S |title=Long-term memory in mental retardation: evidence for a specific impairment in subjects with Down's syndrome |journal=Neuropsychologia |volume=35 |issue=1 |pages=71–9 |date=January 1997 |pmid=8981379 |doi= |url=}}</ref><ref name="pmid10200735">{{cite journal |vauthors=Aylward EH, Li Q, Honeycutt NA, Warren AC, Pulsifer MB, Barta PE, Chan MD, Smith PD, Jerram M, Pearlson GD |title=MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia |journal=Am J Psychiatry |volume=156 |issue=4 |pages=564–8 |date=April 1999 |pmid=10200735 |doi=10.1176/ajp.156.4.564 |url=}}</ref> | * Patients with DS have learning and memory problems and exhibit differences in brain structure compared to the euploid population.<ref name="pmid16967345">{{cite journal |vauthors=Vicari S, Carlesimo GA |title=Short-term memory deficits are not uniform in Down and Williams syndromes |journal=Neuropsychol Rev |volume=16 |issue=2 |pages=87–94 |date=June 2006 |pmid=16967345 |doi=10.1007/s11065-006-9008-4 |url=}}</ref><ref name="pmid8981379">{{cite journal |vauthors=Carlesimo GA, Marotta L, Vicari S |title=Long-term memory in mental retardation: evidence for a specific impairment in subjects with Down's syndrome |journal=Neuropsychologia |volume=35 |issue=1 |pages=71–9 |date=January 1997 |pmid=8981379 |doi= |url=}}</ref><ref name="pmid10200735">{{cite journal |vauthors=Aylward EH, Li Q, Honeycutt NA, Warren AC, Pulsifer MB, Barta PE, Chan MD, Smith PD, Jerram M, Pearlson GD |title=MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia |journal=Am J Psychiatry |volume=156 |issue=4 |pages=564–8 |date=April 1999 |pmid=10200735 |doi=10.1176/ajp.156.4.564 |url=}}</ref> | ||
* Impaired synaptic plasticity in the interstriatal cholinergic system has been though to play a key role in DS-associated motor and cognitive defects.<ref name="pmid19818432">{{cite journal |vauthors=Di Filippo M, Tozzi A, Ghiglieri V, Picconi B, Costa C, Cipriani S, Tantucci M, Belcastro V, Calabresi P |title=Impaired plasticity at specific subset of striatal synapses in the Ts65Dn mouse model of Down syndrome |journal=Biol. Psychiatry |volume=67 |issue=7 |pages=666–71 |date=April 2010 |pmid=19818432 |doi=10.1016/j.biopsych.2009.08.018 |url=}}</ref> | * Impaired synaptic plasticity in the interstriatal cholinergic system has been though to play a key role in DS-associated motor and cognitive defects.<ref name="pmid19818432">{{cite journal |vauthors=Di Filippo M, Tozzi A, Ghiglieri V, Picconi B, Costa C, Cipriani S, Tantucci M, Belcastro V, Calabresi P |title=Impaired plasticity at specific subset of striatal synapses in the Ts65Dn mouse model of Down syndrome |journal=Biol. Psychiatry |volume=67 |issue=7 |pages=666–71 |date=April 2010 |pmid=19818432 |doi=10.1016/j.biopsych.2009.08.018 |url=}}</ref> | ||
* Murine models have allowed to identify genes thought to affect memory and learning in DS patients. The main genes involved are:<ref name="pmid16455265">{{cite journal |vauthors=Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS, Ha I, Song WJ |title=DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects |journal=Neurobiol. Dis. |volume=22 |issue=3 |pages=463–72 |date=June 2006 |pmid=16455265 |doi=10.1016/j.nbd.2005.12.006 |url=}}</ref><ref name="pmid19211897">{{cite journal |vauthors=Yu HH, Yang JS, Wang J, Huang Y, Lee T |title=Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis |journal=J. Neurosci. |volume=29 |issue=6 |pages=1904–14 |date=February 2009 |pmid=19211897 |pmc=2671081 |doi=10.1523/JNEUROSCI.5743-08.2009 |url=}}</ref> | * Murine models have allowed to identify genes thought to affect memory and learning in DS patients. The main genes involved are:<ref name="pmid16455265">{{cite journal |vauthors=Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS, Ha I, Song WJ |title=DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects |journal=Neurobiol. Dis. |volume=22 |issue=3 |pages=463–72 |date=June 2006 |pmid=16455265 |doi=10.1016/j.nbd.2005.12.006 |url=}}</ref><ref name="pmid19211897">{{cite journal |vauthors=Yu HH, Yang JS, Wang J, Huang Y, Lee T |title=Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis |journal=J. Neurosci. |volume=29 |issue=6 |pages=1904–14 |date=February 2009 |pmid=19211897 |pmc=2671081 |doi=10.1523/JNEUROSCI.5743-08.2009 |url=}}</ref><ref name="pmid17093127">{{cite journal |vauthors=Best TK, Siarey RJ, Galdzicki Z |title=Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current |journal=J. Neurophysiol. |volume=97 |issue=1 |pages=892–900 |date=January 2007 |pmid=17093127 |doi=10.1152/jn.00626.2006 |url=}}</ref><ref name="pmid10400987">{{cite journal |vauthors=Ema M, Ikegami S, Hosoya T, Mimura J, Ohtani H, Nakao K, Inokuchi K, Katsuki M, Fujii-Kuriyama Y |title=Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down's syndrome |journal=Hum. Mol. Genet. |volume=8 |issue=8 |pages=1409–15 |date=August 1999 |pmid=10400987 |doi= |url=}}</ref><ref name="pmid18490108">{{cite journal |vauthors=Best TK, Cho-Clark M, Siarey RJ, Galdzicki Z |title=Speeding of miniature excitatory post-synaptic currents in Ts65Dn cultured hippocampal neurons |journal=Neurosci. Lett. |volume=438 |issue=3 |pages=356–61 |date=June 2008 |pmid=18490108 |doi=10.1016/j.neulet.2008.04.039 |url=}}</ref><ref name="pmid16530433">{{cite journal |vauthors=Meng X, Shi J, Peng B, Zou X, Zhang C |title=Effect of mouse Sim2 gene on the cell cycle of PC12 cells |journal=Cell Biol. Int. |volume=30 |issue=4 |pages=349–53 |date=April 2006 |pmid=16530433 |doi=10.1016/j.cellbi.2005.11.012 |url=}}</ref><ref name="pmid19460634">{{cite journal |vauthors=Rachidi M, Delezoide AL, Delabar JM, Lopes C |title=A quantitative assessment of gene expression (QAGE) reveals differential overexpression of DOPEY2, a candidate gene for mental retardation, in Down syndrome brain regions |journal=Int. J. Dev. Neurosci. |volume=27 |issue=4 |pages=393–8 |date=June 2009 |pmid=19460634 |doi=10.1016/j.ijdevneu.2009.02.001 |url=}}</ref> | ||
** DYRK1A | ** DYRK1A | ||
** Synaptojanin 1(SYNJ1) | ** Synaptojanin 1(SYNJ1) |
Revision as of 13:52, 20 March 2018
https://https://www.youtube.com/watch?v=ze_6VWwLtOE%7C350}} |
Down syndrome Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Down syndrome pathophysiology On the Web |
American Roentgen Ray Society Images of Down syndrome pathophysiology |
Risk calculators and risk factors for Down syndrome pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Overview
Pathophysiology
- Down Syndrome (DS) is the consequence of trisomy of human chromosome 21 (Hsa21) and is the most common genetic form of intellectual disability.
- Additional copy of chromosome 21 results in elevated expression of many of the genes encoded on this chromosome, leading to variying expression of genes associated with this chromosome.[1][2][3]
- Recent data points towards a number of ‘susceptibility regions’ located on Hsa21, which are modified by other loci on Hsa21 and other genomic regions, increase the risk of developing specific DS associated phenotypes.[4][5]
Mechanisms of trisomy 21
Meiotic non-disjunction
- In trisomy 21 the extra chromosome 21 is maternal in origin in about 95 percent of the cases, and paternal in only about 5 percent.
- In approximately 95% cases, the extra chromosome occurs as a result of meiotic nondisjunction (NDJ) or abnormal segregation of chromosomes. Of these, in the majority of cases the error occurs during maternal oogenesis, specially during meiosis I.[6][7]
- The process of oogenesis is lengthy and involves meiotic arrest, which makes predisposes the process to inappropriate segregation of chromosomes than spermatogenesis.[8]
- In addition, increased maternal age leads to rapid degradation of cellular proteins involved in spindle formation, sister chromatid cohesion and anaphase separation of sister chromatids in oocytes during cell cycle.[9][10][11]
- Nondisjoined chromosomes often show recombination in various patterns and for trisomy 21, achiasmate meioses contribute about 45% of maternal meiotic error cases.[12][13]
- Absence of chiasmata and suboptimally placed chiasmata are the major mechanisms involved in non-disjunction of chromosome 21.[14]
- Exchange of telomeric segments increase the risk for MI error, whereas exchanges in the pericentromeric regions predispose to MII error. A distally placed chiasma probably links the homologue less efficiently to the spindle and leads to suboptimal orientation of the kinetochore towards opposite pole.[15]
- Achiasmate meioses and mono-telomeric exchanges lead to an increased risk of NDJ regardless of maternal age.[16]
- On the other hand, pericentromeric exchange pedispose older mothers to NDJ during meiosis II.[17][18]
- Immaturity of the feto-placental unit has been proposed as an explanation for the reduced maternal serum alpha fetoprotein (AFP) and unconjugated oestriol (UE3) levels and increased hCG levels in Down’s syndrome pregnancies. Reduced synthesis of AFP by the fetal liver is also thought to contribute to low AFP in Down’s syndrome pregnancies.
- In Down’s syndrome pregnancies the normal proportion of syncytiotrophoblasts to cytotrophoblastsis is disturbed leading to increased hCG levels
Robertsonian translocation
- Approximately 4 percent cases of DS arise from Robetsonian trasnlocation.
- This involves non-reciprocal chromosomal translocation that commonly involves chromosome pairs 13, 14, 15, 21 and 22.
- The event occurrs when the long arms of 2 acrocentric chromosomes (chromosomes with centromeres near their ends) fuse at the centromeres and the 2 short arms are lost
- Unbalanced translocations result in miscarriage, stillbirth and chromosomal imbalance (Down's syndrome, Patau sundrome)
Mosaicism
- Down syndrome resulting from mosaicism is very rare and accounts for around 1 percent of cases of DS.
- Mosaicism does not have any maternal association and it is a post-fertilization mitotic error.
Effects on increased gene dosage
- The phenotypical characrteristics produced in DS may be attributed to the disturbed gene expression due to trisomy 21.
Learning and memory
- Patients with DS have learning and memory problems and exhibit differences in brain structure compared to the euploid population.[19][20][21]
- Impaired synaptic plasticity in the interstriatal cholinergic system has been though to play a key role in DS-associated motor and cognitive defects.[22]
- Murine models have allowed to identify genes thought to affect memory and learning in DS patients. The main genes involved are:[23][24][25][26][27][28][29]
- DYRK1A
- Synaptojanin 1(SYNJ1)
- SIM2
- DOPEY2
- DSCAM
Gene | OMIM Reference | Location | Purported Function |
---|---|---|---|
APP | 104760 | 21q21 | Amyloid beta A4 precursor protein. Suspected to have a major role in cognitive difficulties. One of the first genes studied with transgenic mice with Down syndrome.[31] |
SOD1 | 147450 | 21q22.1 | Superoxide dismutase. Possible role in Alzheimer's disease. Anti-oxidant as well as possible affects on the immuno-system. |
DYRK | 600855 | 21q22.1 | Dual-specificity Tyrosine Phosphorylation-Regulated Kinase 1A. May have an effect on mental development through abnormal neurogenesis. [32] |
IFNAR | 107450 | 21q22.1 | Interferon, Alpha, Beta, and Omega, Receptor. Responsible for the expression of interferon, which affects the immuno-system. |
DSCR1 | 602917 | 21q22.1–21q22.2 | Down Syndrome Critical Region Gene 1. Possibly part of a signal transduction pathway involving both heart and brain.[33] |
COL6A1 | 120220 | 21q22.3 | Collagen, type I, alpha 1 gene. May have an effect on heart disease. |
ETS2 | 164740 | 21q22.3 | Avian Erythroblastosis Virus E26 Oncogene Homolog 2. Researchers have "demonstrated that overexpression of ETS2 results in apoptosis. Transgenic mice overexpressing ETS2 developed a smaller thymus and lymphocyte abnormalities, similar to features observed in Down syndrome."[34] |
CRYA1 | 123580 | 21q22.3 | Crystallin, Alpha-A. Involved in the synthesis of Crystallin, a major component of the lens in eyes. May be cause of cataracts. |
Specific genes
Amyloid beta (APP)
One chromosome 21 gene that might predispose Down syndrome individuals to develop Alzheimer's pathology is the gene that encodes the precursor of the amyloid protein. Neurofibrillary tangles and amyloid plaques are commonly found in both Down syndrome and Alzheimer's individuals. Layer II of the entorhinal cortex and the subiculum, both critical for memory consolidation, are among the first affected by the damage. A gradual decrease in the number of nerve cells throughout the cortex follows. A few years ago, Johns Hopkins scientists created a genetically engineered mouse called Ts65Dn (segmental trisomy 16 mouse) as an excellent model for studying the Down syndrome. Ts65Dn mouse has genes on chromosomes 16 that are very similar to the human chromosome 21 genes. Recently, researchers have used this transgenic mouse to connect APP to cognitive problems among the mice.[31]
Superoxide dismutase (SOD1)
Some (but not all) studies have shown that the activity of the superoxide dismutase enzyme is elevated in Down syndrome. SOD converts oxygen radicals to hydrogen peroxide and water. Oxygen radicals produced in cells can be damaging to cellular structures, hence the important role of SOD. However, the hypothesis says that once SOD activity increases disproportionately to enzymes responsible for removal of hydrogen peroxide (e.g., glutathione peroxidase), the cells will suffer from a peroxide damage. Some scientists believe that the treatment of Down syndrome neurons with free radical scavengers can substantially prevent neuronal degeneration. Oxidative damage to neurons results in rapid brain aging similar to that of Alzheimer's disease.
References
- ↑ Prandini P, Deutsch S, Lyle R, Gagnebin M, Delucinge Vivier C, Delorenzi M, Gehrig C, Descombes P, Sherman S, Dagna Bricarelli F, Baldo C, Novelli A, Dallapiccola B, Antonarakis SE (August 2007). "Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance". Am. J. Hum. Genet. 81 (2): 252–63. doi:10.1086/519248. PMC 1950802. PMID 17668376.
- ↑ Sultan M, Piccini I, Balzereit D, Herwig R, Saran NG, Lehrach H, Reeves RH, Yaspo ML (2007). "Gene expression variation in Down's syndrome mice allows prioritization of candidate genes". Genome Biol. 8 (5): R91. doi:10.1186/gb-2007-8-5-r91. PMC 1929163. PMID 17531092.
- ↑ Aït Yahya-Graison E, Aubert J, Dauphinot L, Rivals I, Prieur M, Golfier G, Rossier J, Personnaz L, Creau N, Bléhaut H, Robin S, Delabar JM, Potier MC (September 2007). "Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes". Am. J. Hum. Genet. 81 (3): 475–91. doi:10.1086/520000. PMC 1950826. PMID 17701894.
- ↑ Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, Grubert F, Erdman C, Gao MC, Lange K, Sobel EM, Barlow GM, Aylsworth AS, Carpenter NJ, Clark RD, Cohen MY, Doran E, Falik-Zaccai T, Lewin SO, Lott IT, McGillivray BC, Moeschler JB, Pettenati MJ, Pueschel SM, Rao KW, Shaffer LG, Shohat M, Van Riper AJ, Warburton D, Weissman S, Gerstein MB, Snyder M, Korenberg JR (July 2009). "The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies". Proc. Natl. Acad. Sci. U.S.A. 106 (29): 12031–6. doi:10.1073/pnas.0813248106. PMC 2709665. PMID 19597142.
- ↑ Lyle R, Béna F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, Doco-Fenzy M, Cornillet-Lefèbvre P, Pelet A, Lyonnet S, Toutain A, Colleaux L, Horst J, Kennerknecht I, Wakamatsu N, Descartes M, Franklin JC, Florentin-Arar L, Kitsiou S, Aït Yahya-Graison E, Costantine M, Sinet PM, Delabar JM, Antonarakis SE (April 2009). "Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21". Eur. J. Hum. Genet. 17 (4): 454–66. doi:10.1038/ejhg.2008.214. PMC 2986205. PMID 19002211.
- ↑ Antonarakis SE (March 1991). "Parental origin of the extra chromosome in trisomy 21 as indicated by analysis of DNA polymorphisms. Down Syndrome Collaborative Group". N. Engl. J. Med. 324 (13): 872–6. doi:10.1056/NEJM199103283241302. PMID 1825697.
- ↑ Antonarakis SE, Petersen MB, McInnis MG, Adelsberger PA, Schinzel AA, Binkert F, Pangalos C, Raoul O, Slaugenhaupt SA, Hafez M (March 1992). "The meiotic stage of nondisjunction in trisomy 21: determination by using DNA polymorphisms". Am. J. Hum. Genet. 50 (3): 544–50. PMC 1684265. PMID 1347192.
- ↑ Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N, Sherman SL (March 2008). "New insights into human nondisjunction of chromosome 21 in oocytes". PLoS Genet. 4 (3): e1000033. doi:10.1371/journal.pgen.1000033. PMC 2265487. PMID 18369452.
- ↑ Hawley RS, Frazier JA, Rasooly R (September 1994). "Separation anxiety: the etiology of nondisjunction in flies and people". Hum. Mol. Genet. 3 (9): 1521–8. PMID 7833906.
- ↑ Wolstenholme J, Angell RR (November 2000). "Maternal age and trisomy--a unifying mechanism of formation". Chromosoma. 109 (7): 435–8. PMID 11151672.
- ↑ Yoon PW, Freeman SB, Sherman SL, Taft LF, Gu Y, Pettay D, Flanders WD, Khoury MJ, Hassold TJ (March 1996). "Advanced maternal age and the risk of Down syndrome characterized by the meiotic stage of chromosomal error: a population-based study". Am. J. Hum. Genet. 58 (3): 628–33. PMC 1914585. PMID 8644722.
- ↑ Sherman SL, Allen EG, Bean LH, Freeman SB (2007). "Epidemiology of Down syndrome". Ment Retard Dev Disabil Res Rev. 13 (3): 221–7. doi:10.1002/mrdd.20157. PMID 17910090.
- ↑ Koehler KE, Hawley RS, Sherman S, Hassold T (1996). "Recombination and nondisjunction in humans and flies". Hum. Mol. Genet. 5 Spec No: 1495–504. PMID 8875256.
- ↑ Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, Gu Y, Shen J, Saker D, May KM, Avramopoulos D, Petersen MB, Hallberg A, Mikkelsen M, Hassold TJ, Sherman SL (December 1996). "Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II". Nat. Genet. 14 (4): 400–5. doi:10.1038/ng1296-400. PMID 8944019.
- ↑ Hawley RS, Frazier JA, Rasooly R (September 1994). "Separation anxiety: the etiology of nondisjunction in flies and people". Hum. Mol. Genet. 3 (9): 1521–8. PMID 7833906.
- ↑ Lamb NE, Yu K, Shaffer J, Feingold E, Sherman SL (January 2005). "Association between maternal age and meiotic recombination for trisomy 21". Am. J. Hum. Genet. 76 (1): 91–9. doi:10.1086/427266. PMC 1196437. PMID 15551222.
- ↑ Lamb NE, Yu K, Shaffer J, Feingold E, Sherman SL (January 2005). "Association between maternal age and meiotic recombination for trisomy 21". Am. J. Hum. Genet. 76 (1): 91–9. doi:10.1086/427266. PMC 1196437. PMID 15551222.
- ↑ Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, Masse N, Sherman SL (March 2008). "New insights into human nondisjunction of chromosome 21 in oocytes". PLoS Genet. 4 (3): e1000033. doi:10.1371/journal.pgen.1000033. PMC 2265487. PMID 18369452.
- ↑ Vicari S, Carlesimo GA (June 2006). "Short-term memory deficits are not uniform in Down and Williams syndromes". Neuropsychol Rev. 16 (2): 87–94. doi:10.1007/s11065-006-9008-4. PMID 16967345.
- ↑ Carlesimo GA, Marotta L, Vicari S (January 1997). "Long-term memory in mental retardation: evidence for a specific impairment in subjects with Down's syndrome". Neuropsychologia. 35 (1): 71–9. PMID 8981379.
- ↑ Aylward EH, Li Q, Honeycutt NA, Warren AC, Pulsifer MB, Barta PE, Chan MD, Smith PD, Jerram M, Pearlson GD (April 1999). "MRI volumes of the hippocampus and amygdala in adults with Down's syndrome with and without dementia". Am J Psychiatry. 156 (4): 564–8. doi:10.1176/ajp.156.4.564. PMID 10200735.
- ↑ Di Filippo M, Tozzi A, Ghiglieri V, Picconi B, Costa C, Cipriani S, Tantucci M, Belcastro V, Calabresi P (April 2010). "Impaired plasticity at specific subset of striatal synapses in the Ts65Dn mouse model of Down syndrome". Biol. Psychiatry. 67 (7): 666–71. doi:10.1016/j.biopsych.2009.08.018. PMID 19818432.
- ↑ Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS, Ha I, Song WJ (June 2006). "DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects". Neurobiol. Dis. 22 (3): 463–72. doi:10.1016/j.nbd.2005.12.006. PMID 16455265.
- ↑ Yu HH, Yang JS, Wang J, Huang Y, Lee T (February 2009). "Endodomain diversity in the Drosophila Dscam and its roles in neuronal morphogenesis". J. Neurosci. 29 (6): 1904–14. doi:10.1523/JNEUROSCI.5743-08.2009. PMC 2671081. PMID 19211897.
- ↑ Best TK, Siarey RJ, Galdzicki Z (January 2007). "Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current". J. Neurophysiol. 97 (1): 892–900. doi:10.1152/jn.00626.2006. PMID 17093127.
- ↑ Ema M, Ikegami S, Hosoya T, Mimura J, Ohtani H, Nakao K, Inokuchi K, Katsuki M, Fujii-Kuriyama Y (August 1999). "Mild impairment of learning and memory in mice overexpressing the mSim2 gene located on chromosome 16: an animal model of Down's syndrome". Hum. Mol. Genet. 8 (8): 1409–15. PMID 10400987.
- ↑ Best TK, Cho-Clark M, Siarey RJ, Galdzicki Z (June 2008). "Speeding of miniature excitatory post-synaptic currents in Ts65Dn cultured hippocampal neurons". Neurosci. Lett. 438 (3): 356–61. doi:10.1016/j.neulet.2008.04.039. PMID 18490108.
- ↑ Meng X, Shi J, Peng B, Zou X, Zhang C (April 2006). "Effect of mouse Sim2 gene on the cell cycle of PC12 cells". Cell Biol. Int. 30 (4): 349–53. doi:10.1016/j.cellbi.2005.11.012. PMID 16530433.
- ↑ Rachidi M, Delezoide AL, Delabar JM, Lopes C (June 2009). "A quantitative assessment of gene expression (QAGE) reveals differential overexpression of DOPEY2, a candidate gene for mental retardation, in Down syndrome brain regions". Int. J. Dev. Neurosci. 27 (4): 393–8. doi:10.1016/j.ijdevneu.2009.02.001. PMID 19460634.
- ↑ See Leshin, L. (2003). "Trisomy 21: The Story of Down Syndrome". Retrieved 2006-05-21.
- ↑ 31.0 31.1 Chandra Shekhar (6 July 2006). "Down syndrome traced to one gene". The Scientist. Retrieved 2006-07-11. Check date values in:
|date=
(help) - ↑ Song, W.-J., Sternberg, L. R., Kasten-Sportes, C., Van Keuren, M. L., Chung, S.-H., Slack, A. C., Miller, D. E., Glover, T. W., Chiang, P.-W., Lou, L.; Kurnit, D. M. (1996). "Isolation of human and murine homologues of the Drosophila minibrain gene: human homologue maps to 21q22.2 in the Down syndrome 'critical region". Genomics. 38: 331–339.
- ↑ Fuentes JJ, Pritchard MA, Planas AM, Bosch A, Ferrer I, Estivill X (1995). "A new human gene from the Down syndrome critical region encodes a proline-rich protein highly expressed in fetal brain and heart". Hum Mol Genet. 4 (10): 1935–1944.
- ↑ OMIM, NIH. "V-ETS Avian Erythroblastosis virus E26 Oncogene Homolog 2". Retrieved 2006-06-29.