Myoglobinuria historical perspective: Difference between revisions

Jump to navigation Jump to search
Aksiniya (talk | contribs)
Created page with "Myoglobin was the first protein to have its three-dimensional structure revealed by X-ray crystallography.<ref>[https://www.nsf.gov/news/news_summ.jsp?cntn_id=100689 (U.S...."
 
Aksiniya (talk | contribs)
No edit summary
 
Line 1: Line 1:
Myoglobin was the first protein to have its three-dimensional structure revealed by [[X-ray crystallography]].<ref>[https://www.nsf.gov/news/news_summ.jsp?cntn_id=100689 (U.S.) National Science Foundation: Protein Data Bank Chronology (Jan. 21, 2004)]. Retrieved 3.17.2010</ref> This achievement was reported in 1958 by [[John Kendrew]] and associates.<ref name="architecture">{{cite journal | vauthors = Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC | title = A three-dimensional model of the myoglobin molecule obtained by x-ray analysis | journal = Nature | volume = 181 | issue = 4610 | pages = 662–6 | date = Mar 1958 | pmid = 13517261 | doi = 10.1038/181662a0 | bibcode = 1958Natur.181..662K }}</ref> For this discovery, John Kendrew shared the 1962 [[Nobel Prize in chemistry]] with [[Max Perutz]].<ref name="nobel">[http://nobelprize.org/chemistry/laureates/1962/index.html The Nobel Prize in Chemistry 1962]</ref> Despite being one of the most studied proteins in biology, its physiological function is not yet conclusively established: mice genetically engineered to lack myoglobin can be viable and fertile but show many cellular and physiological adaptations to overcome the loss. Through observing these changes in myoglobin-deplete mice, it is hypothesised that myoglobin function relates to increased oxygen transport to muscle, oxygen storage and as a scavenger of [[reactive oxygen species]].<ref name="mice-function">{{cite journal | vauthors = Garry DJ, Kanatous SB, Mammen PP | title = Molecular insights into the functional role of myoglobin | journal = Advances in Experimental Medicine and Biology | volume = 618 | pages = 181-93 | date = 2007 | pmid = 18269197 | doi = 10.1007/978-0-387-75434-5_14 }}</ref>
==Discovery==
* In 1958 [[John Kendrew]] and associates announced that they have discovered that [[Myoglobin]] was the first protein to have its three-dimensional structure revealed by [[X-ray crystallography]].<ref>[https://www.nsf.gov/news/news_summ.jsp?cntn_id=100689 (U.S.) National Science Foundation: Protein Data Bank Chronology (Jan. 21, 2004)]. Retrieved 3.17.2010</ref> .<ref name="architecture">{{cite journal | vauthors = Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC | title = A three-dimensional model of the myoglobin molecule obtained by x-ray analysis | journal = Nature | volume = 181 | issue = 4610 | pages = 662–6 | date = Mar 1958 | pmid = 13517261 | doi = 10.1038/181662a0 | bibcode = 1958Natur.181..662K }}</ref>  
 
* For this discovery, John Kendrew shared the 1962 [[Nobel Prize in chemistry]] with [[Max Perutz]].<ref name="nobel">[http://nobelprize.org/chemistry/laureates/1962/index.html The Nobel Prize in Chemistry 1962]</ref>  
 
 
==Landmark Events in the Development of Treatment Strategies==
* Despite being one of the most studied proteins in biology, its physiological function is not yet conclusively established: mice genetically engineered to lack myoglobin can be viable and fertile but show many cellular and physiological adaptations to overcome the loss. Through observing these changes in myoglobin-deplete mice, it is hypothesised that myoglobin function relates to increased oxygen transport to muscle, oxygen storage and as a scavenger of [[reactive oxygen species]].<ref name="mice-function">{{cite journal | vauthors = Garry DJ, Kanatous SB, Mammen PP | title = Molecular insights into the functional role of myoglobin | journal = Advances in Experimental Medicine and Biology | volume = 618 | pages = 181-93 | date = 2007 | pmid = 18269197 | doi = 10.1007/978-0-387-75434-5_14 }}</ref>
 
 


==References==
==References==

Latest revision as of 12:37, 10 September 2018

Discovery


Landmark Events in the Development of Treatment Strategies

  • Despite being one of the most studied proteins in biology, its physiological function is not yet conclusively established: mice genetically engineered to lack myoglobin can be viable and fertile but show many cellular and physiological adaptations to overcome the loss. Through observing these changes in myoglobin-deplete mice, it is hypothesised that myoglobin function relates to increased oxygen transport to muscle, oxygen storage and as a scavenger of reactive oxygen species.[4]


References

  1. (U.S.) National Science Foundation: Protein Data Bank Chronology (Jan. 21, 2004). Retrieved 3.17.2010
  2. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC (Mar 1958). "A three-dimensional model of the myoglobin molecule obtained by x-ray analysis". Nature. 181 (4610): 662–6. Bibcode:1958Natur.181..662K. doi:10.1038/181662a0. PMID 13517261.
  3. The Nobel Prize in Chemistry 1962
  4. Garry DJ, Kanatous SB, Mammen PP (2007). "Molecular insights into the functional role of myoglobin". Advances in Experimental Medicine and Biology. 618: 181–93. doi:10.1007/978-0-387-75434-5_14. PMID 18269197.

Template:WH Template:WS