Hypogammaglobulinemia: Difference between revisions

Jump to navigation Jump to search
No edit summary
Line 65: Line 65:


==Pathophysiology==
==Pathophysiology==
*Hypogammaglobulinemia may result from lack of production, excessive loss of immunoglobulins, or both.<ref name="pmid22820757">{{cite journal |vauthors=Artac H, Kara R, Gokturk B, Reisli I |title=Reduced CD19 expression and decreased memory B cell numbers in transient hypogammaglobulinemia of infancy |journal=Clin. Exp. Med. |volume=13 |issue=4 |pages=257–63 |date=November 2013 |pmid=22820757 |doi=10.1007/s10238-012-0200-y |url=}}</ref>
*[[Hypogammaglobulinemia]] may result from lack of production, excessive loss of [[immunoglobulins]], or both.<ref name="pmid22820757">{{cite journal |vauthors=Artac H, Kara R, Gokturk B, Reisli I |title=Reduced CD19 expression and decreased memory B cell numbers in transient hypogammaglobulinemia of infancy |journal=Clin. Exp. Med. |volume=13 |issue=4 |pages=257–63 |date=November 2013 |pmid=22820757 |doi=10.1007/s10238-012-0200-y |url=}}</ref>


* Congenital disorders affecting B-cell development can result in complete or partial absence of one or more Ig isotypes. <ref name="pmid17165264">{{cite journal |vauthors=Dorsey MJ, Orange JS |title=Impaired specific antibody response and increased B-cell population in transient hypogammaglobulinemia of infancy |journal=Ann. Allergy Asthma Immunol. |volume=97 |issue=5 |pages=590–5 |date=November 2006 |pmid=17165264 |doi=10.1016/S1081-1206(10)61085-X |url=}}</ref>
* Congenital disorders affecting [[B cell|B-cell]] development can result in complete or partial absence of one or more Ig isotypes. <ref name="pmid17165264">{{cite journal |vauthors=Dorsey MJ, Orange JS |title=Impaired specific antibody response and increased B-cell population in transient hypogammaglobulinemia of infancy |journal=Ann. Allergy Asthma Immunol. |volume=97 |issue=5 |pages=590–5 |date=November 2006 |pmid=17165264 |doi=10.1016/S1081-1206(10)61085-X |url=}}</ref>
*The classic form of this type of disorder is Bruton agammaglobulinemia, also known as X-linked agammaglobulinemia (XLA).
*The classic form of this type of disorder is [[Bruton agammaglobulinemia]], also known as [[X-linked agammaglobulinemia]] (XLA).


* Because B, T, and natural killer (NK) cells share a common progenitor, defects occurring at early developmental stages may result in combined immunodeficiency involving all cell types, although defects further down the differentiation pathways may result in deficiencies of a single cell type only.
* Because B, T, and [[Natural Killer T cell|natural killer]] (NK) cells share a common progenitor, defects occurring at early developmental stages may result in [[combined immunodeficiency]] involving all cell types, although defects further down the differentiation pathways may result in deficiencies of a single cell type only.


*The symptoms depend on the type and severity of the Ig deficiency and the presence or deficiency of cellular immunity. In general, hypogammaglobulinemia results in recurrent infections with a restricted set of microorganisms primarily localized to the upper and lower airways, although bacteremia and GI infections can also occur. Patients with associated defects in cellular immunity usually present with opportunistic viral, fungal, or parasitic infections.
*The symptoms depend on the type and severity of the Ig deficiency and the presence or deficiency of cellular immunity. In general, [[hypogammaglobulinemia]] results in recurrent [[infections]] with a restricted set of [[microorganisms]] primarily localized to the upper and lower airways, although [[bacteremia]] and [[GI]] [[infections]] can also occur. Patients with associated defects in cellular immunity usually present with [[Opportunistic infection|opportunistic]] [[viral]], [[fungal]], or [[parasitic infections]].


==Causes==
==Causes==
Line 243: Line 243:
===History and Symptoms===
===History and Symptoms===
A clinical history of the following may be present:<ref name="pmid11192522">{{cite journal |vauthors=Kiliç SS, Tezcan I, Sanal O, Metin A, Ersoy F |title=Transient hypogammaglobulinemia of infancy: clinical and immunologic features of 40 new cases |journal=Pediatr Int |volume=42 |issue=6 |pages=647–50 |date=December 2000 |pmid=11192522 |doi= |url=}}</ref>
A clinical history of the following may be present:<ref name="pmid11192522">{{cite journal |vauthors=Kiliç SS, Tezcan I, Sanal O, Metin A, Ersoy F |title=Transient hypogammaglobulinemia of infancy: clinical and immunologic features of 40 new cases |journal=Pediatr Int |volume=42 |issue=6 |pages=647–50 |date=December 2000 |pmid=11192522 |doi= |url=}}</ref>
* Granulomatous disease, enteropathy (celiac-like/inflammatory), and autoimmune cytopenia may suggest common variable immunodeficiency (CVID).
* [[Granulomatous]] disease, [[enteropathy]] ([[celiac]]-like/inflammatory), and autoimmune [[cytopenia]] may suggest [[common variable immunodeficiency]] (CVID).
* Infections in infancy (especially ''Pneumocystis jirovecii'', respiratory syncytial virus, ''Candida'', and bacteria)
* [[Infections]] in infancy (especially ''[[Pneumocystis jirovecii]]'', [[respiratory syncytial virus]], ''[[Candida]]'', and [[bacteria]])
* X-linked agammaglobulinemia (XLA/Bruton disease)
* [[X-linked agammaglobulinemia]] (XLA/[[Bruton disease]])
* Transient hypogammaglobulinemia of infancy
* Transient [[hypogammaglobulinemia]] of infancy
* Celiac disease  
* [[Celiac disease]]
* Thymoma  
* [[Thymoma]]


* Recurrent infections
* Recurrent infections


* Secondary causes such as nephrotic syndrome, malabsorption/gastroenteropathy (e.g., intestinal lymphangiectasia), myeloma, leukemia, lymphoma, or malnutrition.
* Secondary causes such as [[nephrotic syndrome]], [[malabsorption]]/gastroenteropathy (e.g., intestinal [[lymphangiectasia]]), [[myeloma]], [[leukemia]], [[lymphoma]], or [[malnutrition]].
* Medication history may reveal use of rituximab, carbamazepine, phenytoin, disease-modifying antirheumatic drugs, cytotoxic drugs, or immunosuppressive drugs).  
* Medication history may reveal use of [[rituximab]], [[carbamazepine]], [[phenytoin]], disease-modifying antirheumatic drugs, [[cytotoxic drugs]], or [[immunosuppressive drugs]]).  
* History of radiation therapy.
* History of [[radiation therapy]].
Symptoms may include
Symptoms may include
* Failure to thrive in children                          Chronic diarrhea
* Failure to thrive in children                          Chronic [[diarrhea]]                                       
 
* Recurrent [[infections]]                                     [[Shortness of breath]]
* Chronic diarrhea                                          Complications after receiving live vaccines
* [[Chronic cough]]                                             [[Bronchiectasis]]
* Recurrent infections                                    Shortness of breath
* [[Sinus]] pain                                                    Nasal discharge
* Chronic cough                                              Bronchiectasis
* [[Diarrhea]]                                                       [[Steatorrhea]]
* Sinus pain                                                    Nasal discharge
* Complications after receiving live [[vaccines]]
* Diarrhea                                                        Steatorrhea


===Physical Examination===
===Physical Examination===
Line 279: Line 278:
Laboratory studies that may be helpful include the following:<ref name="pmid30216434">{{cite journal |vauthors=Zaman M, Huissoon A, Buckland M, Patel S, Alachkar H, Edgar JD, Thomas M, Arumugakani G, Baxendale H, Burns S, Williams AP, Jolles S, Herriot R, Sargur RB, Arkwright PD |title=Clinical & laboratory features of seventy-eight UK patients with Good's syndrome (thymoma & hypogammaglobulinemia) |journal=Clin. Exp. Immunol. |volume= |issue= |pages= |date=September 2018 |pmid=30216434 |doi=10.1111/cei.13216 |url=}}</ref>
Laboratory studies that may be helpful include the following:<ref name="pmid30216434">{{cite journal |vauthors=Zaman M, Huissoon A, Buckland M, Patel S, Alachkar H, Edgar JD, Thomas M, Arumugakani G, Baxendale H, Burns S, Williams AP, Jolles S, Herriot R, Sargur RB, Arkwright PD |title=Clinical & laboratory features of seventy-eight UK patients with Good's syndrome (thymoma & hypogammaglobulinemia) |journal=Clin. Exp. Immunol. |volume= |issue= |pages= |date=September 2018 |pmid=30216434 |doi=10.1111/cei.13216 |url=}}</ref>


*Serum immunoglobulin<ref name="pmid27250108">{{cite journal |vauthors=Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F |title=Genes associated with common variable immunodeficiency: one diagnosis to rule them all? |journal=J. Med. Genet. |volume=53 |issue=9 |pages=575–90 |date=September 2016 |pmid=27250108 |doi=10.1136/jmedgenet-2015-103690 |url=}}</ref>
*Serum [[immunoglobulin]]<ref name="pmid27250108">{{cite journal |vauthors=Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F |title=Genes associated with common variable immunodeficiency: one diagnosis to rule them all? |journal=J. Med. Genet. |volume=53 |issue=9 |pages=575–90 |date=September 2016 |pmid=27250108 |doi=10.1136/jmedgenet-2015-103690 |url=}}</ref>


*Antibody response after immunization
*Antibody response after [[immunization]]


*Isohemagglutinins
*Isohemagglutinins


*Peripheral blood lymphocyte immunophenotyping<ref name="pmid2977623">{{cite journal |vauthors=Clerici M, Villa ML, Mantovani M, Rugarli C |title=NK cell activity and monocyte dysfunctions in a patient with common variable hypogammaglobulinemia |journal=J Clin Lab Immunol |volume=27 |issue=3 |pages=143–7 |date=November 1988 |pmid=2977623 |doi= |url=}}</ref>
*Peripheral blood [[lymphocyte]] [[immunophenotyping]]<ref name="pmid2977623">{{cite journal |vauthors=Clerici M, Villa ML, Mantovani M, Rugarli C |title=NK cell activity and monocyte dysfunctions in a patient with common variable hypogammaglobulinemia |journal=J Clin Lab Immunol |volume=27 |issue=3 |pages=143–7 |date=November 1988 |pmid=2977623 |doi= |url=}}</ref>


*Evaluation of cellular immunity (cutaneous delayed-type hypersensitivity)
*Evaluation of [[cellular immunity]] ([[cutaneous]] delayed-type hypersensitivity)


*Complete blood count
*[[Complete blood count]]


*Renal studies
*Renal studies


*GI studies (eg, alpha1 -antitrypsin)
*[[GI]] studies (eg, alpha1-antitrypsin)


===Electrocardiogram===
===Electrocardiogram===

Revision as of 17:09, 25 September 2018

Hypogammaglobulinemia
ICD-10 D80.0-D80.1
ICD-9 279.00
DiseasesDB 6426
MedlinePlus 001307
eMedicine med/1120  ped/54
MeSH D000361

WikiDoc Resources for Hypogammaglobulinemia

Articles

Most recent articles on Hypogammaglobulinemia

Most cited articles on Hypogammaglobulinemia

Review articles on Hypogammaglobulinemia

Articles on Hypogammaglobulinemia in N Eng J Med, Lancet, BMJ

Media

Powerpoint slides on Hypogammaglobulinemia

Images of Hypogammaglobulinemia

Photos of Hypogammaglobulinemia

Podcasts & MP3s on Hypogammaglobulinemia

Videos on Hypogammaglobulinemia

Evidence Based Medicine

Cochrane Collaboration on Hypogammaglobulinemia

Bandolier on Hypogammaglobulinemia

TRIP on Hypogammaglobulinemia

Clinical Trials

Ongoing Trials on Hypogammaglobulinemia at Clinical Trials.gov

Trial results on Hypogammaglobulinemia

Clinical Trials on Hypogammaglobulinemia at Google

Guidelines / Policies / Govt

US National Guidelines Clearinghouse on Hypogammaglobulinemia

NICE Guidance on Hypogammaglobulinemia

NHS PRODIGY Guidance

FDA on Hypogammaglobulinemia

CDC on Hypogammaglobulinemia

Books

Books on Hypogammaglobulinemia

News

Hypogammaglobulinemia in the news

Be alerted to news on Hypogammaglobulinemia

News trends on Hypogammaglobulinemia

Commentary

Blogs on Hypogammaglobulinemia

Definitions

Definitions of Hypogammaglobulinemia

Patient Resources / Community

Patient resources on Hypogammaglobulinemia

Discussion groups on Hypogammaglobulinemia

Patient Handouts on Hypogammaglobulinemia

Directions to Hospitals Treating Hypogammaglobulinemia

Risk calculators and risk factors for Hypogammaglobulinemia

Healthcare Provider Resources

Symptoms of Hypogammaglobulinemia

Causes & Risk Factors for Hypogammaglobulinemia

Diagnostic studies for Hypogammaglobulinemia

Treatment of Hypogammaglobulinemia

Continuing Medical Education (CME)

CME Programs on Hypogammaglobulinemia

International

Hypogammaglobulinemia en Espanol

Hypogammaglobulinemia en Francais

Business

Hypogammaglobulinemia in the Marketplace

Patents on Hypogammaglobulinemia

Experimental / Informatics

List of terms related to Hypogammaglobulinemia

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Vindhya BellamKonda, M.B.B.S [2] Omer Kamal, M.D.[3]

Synonyms and keywords:

Overview

Hypogammaglobulinemia is a type of primary immune deficiency disease. "Hypogammaglobulinemia" is largely synonymous with "agammaglobulinemia". When the latter term is used (as in "X-linked agammaglobulinemia") it implies that gamma globulins are not merely reduced, but completely absent. Modern assays have allowed most agammaglobulinemias to be more precisely defined as hypogammaglobulinemias,but the distinction is not usually clinically relevant. "Hypogammaglobulinemia" is distinguished from dysgammaglobulinemia, which is a reduction in some types of gamma globulins, but not others.

Historical Perspective

  • Dr. Robert A Good and March of dimes foundation maintained a close association for a quarter century in the fight against immunodeficiency diseases.[1]

Classification

Type[8] OMIM[9] Gene
AGM1 601495 IGHM
AGM2 613500 IGLL1
AGM3 613501 CD79A
AGM4 613502 BLNK
AGM5 613506 LRRC8A
AGM6 612692 CD79B

Pathophysiology

  • Because B, T, and natural killer (NK) cells share a common progenitor, defects occurring at early developmental stages may result in combined immunodeficiency involving all cell types, although defects further down the differentiation pathways may result in deficiencies of a single cell type only.

Causes

Hypogammaglobulinemia is caused by:[12][13][14][14][15]

Primary or congenital B-cell disorders X-linked agammaglobulinemia, Common variable immunodeficiency, transient hypogammaglobulinemia of infancy, IgG subclass deficiency,severe combined immunodeficieny, Wiskott-Aldrich syndrome, Ataxia-telanectasia
Cardiovascular No underlying causes
Dermatologic No underlying causes
Drugs Gold, D- penicillamine, Sulfasalazine, anticonvulsants, glucocorticoids, methotrexate, calcineurin inhibitors, rituximab
Ear Nose Throat No underlying causes
Endocrine No underlying causes
Environmental Ionizing radiation, Toxins
Gastroenterologic protein losing enteropathy, intestinal lymphangiectasia, Cirrhosis
Hematologic Thymoma
Iatrogenic Radiation
Infectious Disease Herpes, Measles, Mycobacterial, Malaria, helminthic infections
Nutritional / Metabolic Protein energy malnutrition
Obstetric/Gynecologic Ovarian cancer
Oncologic Chronic lymphocytic leukemia, Multiple myeloma, Thymoma
Overdose / Toxicity
Pulmonary bronchiectasis
Renal / Electrolyte Nephrotic syndrome, Hemodialysis
Trauma
Urologic No underlying causes
Miscellaneous

Differentiating Hypogammaglobulinemia from Other Diseases

Hypogammaglobulinemia must be differentiated from Bronchiectasis, complement deficiencies, and cystic fibrosis[16][17][18][19]

Medical condition Characteristic features
Complement deficiencies
  • Caused by a genetic defect in one of the genes that code for different complement proteins
  • Constitute about 7-9% of primary immunodeficiencies
  • Deficiency of C1q, C2, C4 tend to be linked with autoimmune diseases.
  • C5-C9 deficiency more prone to meningococcal disease.
Bronchiectasis
  • Secondary to an infectious process resulting in distortion of conducting bronchi
  • Copious mucopurulent sputum production lasting for months to years
  • Hemoptysis
  • Dyspnea, pleuritic chest pain, wheezing, fever, weight loss
Cystic fibrosis
  • Glomeruonephritis in most cases resolves after infection subsides
  • Decreased levels of C3 is transient
  • Immunoflouroescence microscopy shows immunoglobulin deposition in poststreptococcal infection
Staphylococcal associated glomerulonephritis
  • Glomerulonephritis resolves after infection subsides
  • Decreased C3 is transient
  • Immunofluorescence microscopy shows immunoglobulin deposition in staphylococcal associated glomerulonephritis.

Epidemiology and Demographics

Risk Factors

Common risk factors in the development of hypogammaglobulinemia include:[20]

Screening

There is insufficient evidence to recommend routine screening for hypogammaglobulinemia.

Natural History, Complications, and Prognosis

Common complications of hypogammaglobulinemia include:[24]

Diagnosis

Diagnostic Study of Choice

There is no established diagnostic study of choice for the diagnosis of hypogammaglobulinemia.

History and Symptoms

A clinical history of the following may be present:[25]

  • Recurrent infections

Symptoms may include

Physical Examination

Common physical examination findings of hypogammaglobulinemia include :[26]

Laboratory Findings

Laboratory studies that may be helpful include the following:[26]

  • Isohemagglutinins
  • Renal studies
  • GI studies (eg, alpha1-antitrypsin)

Electrocardiogram

There are no ECG findings associated with hypogammaglobulinemia.

X-ray

There are no x-ray findings associated with [disease name].

OR

An x-ray may be helpful in the diagnosis of [disease name]. Findings on an x-ray suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no x-ray findings associated with [disease name]. However, an x-ray may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Echocardiography or Ultrasound

There are no echocardiography/ultrasound findings associated with [disease name].

OR

Echocardiography/ultrasound may be helpful in the diagnosis of [disease name]. Findings on an echocardiography/ultrasound suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no echocardiography/ultrasound findings associated with [disease name]. However, an echocardiography/ultrasound may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

CT scan

There are no CT scan findings associated with [disease name].

OR

[Location] CT scan may be helpful in the diagnosis of [disease name]. Findings on CT scan suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no CT scan findings associated with [disease name]. However, a CT scan may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

MRI

There are no MRI findings associated with [disease name].

OR

[Location] MRI may be helpful in the diagnosis of [disease name]. Findings on MRI suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

There are no MRI findings associated with [disease name]. However, a MRI may be helpful in the diagnosis of complications of [disease name], which include [complication 1], [complication 2], and [complication 3].

Other Imaging Findings

There are no other imaging findings associated with [disease name].

OR

[Imaging modality] may be helpful in the diagnosis of [disease name]. Findings on an [imaging modality] suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

Other Diagnostic Studies

There are no other diagnostic studies associated with [disease name].

OR

[Diagnostic study] may be helpful in the diagnosis of [disease name]. Findings suggestive of/diagnostic of [disease name] include [finding 1], [finding 2], and [finding 3].

OR

Other diagnostic studies for [disease name] include [diagnostic study 1], which demonstrates [finding 1], [finding 2], and [finding 3], and [diagnostic study 2], which demonstrates [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

There is no treatment for [disease name]; the mainstay of therapy is supportive care.

OR

Supportive therapy for [disease name] includes [therapy 1], [therapy 2], and [therapy 3].

OR

The majority of cases of [disease name] are self-limited and require only supportive care.

OR

[Disease name] is a medical emergency and requires prompt treatment.

OR

The mainstay of treatment for [disease name] is [therapy].

OR   The optimal therapy for [malignancy name] depends on the stage at diagnosis.

OR

[Therapy] is recommended among all patients who develop [disease name].

OR

Pharmacologic medical therapy is recommended among patients with [disease subclass 1], [disease subclass 2], and [disease subclass 3].

OR

Pharmacologic medical therapies for [disease name] include (either) [therapy 1], [therapy 2], and/or [therapy 3].

OR

Empiric therapy for [disease name] depends on [disease factor 1] and [disease factor 2].

OR

Patients with [disease subclass 1] are treated with [therapy 1], whereas patients with [disease subclass 2] are treated with [therapy 2].

Surgery

Surgical intervention is not recommended for the management of [disease name].

OR

Surgery is not the first-line treatment option for patients with [disease name]. Surgery is usually reserved for patients with either [indication 1], [indication 2], and [indication 3]

OR

The mainstay of treatment for [disease name] is medical therapy. Surgery is usually reserved for patients with either [indication 1], [indication 2], and/or [indication 3].

OR

The feasibility of surgery depends on the stage of [malignancy] at diagnosis.

OR

Surgery is the mainstay of treatment for [disease or malignancy].

Primary Prevention

There are no established measures for the primary prevention of hypogammaglobulinemia

Secondary Prevention

There are no established measures for the secondary prevention of hypogammaglobulinemia.

References

  1. Rose DW (2007). "Robert A. Good, the March of Dimes, and immunodeficiency: an historical perspective". Immunol. Res. 38 (1–3): 51–4. PMID 17917009.
  2. Stiehm ER (January 1993). "New and old immunodeficiencies". Pediatr. Res. 33 (1 Suppl): S2–7, discussion S7–8. doi:10.1203/00006450-199305001-00007. PMID 8433870.
  3. "USE OF immune globulins for the treatment of agammaglobulinemia or hypogammaglobulinemia". J Am Med Assoc. 162 (2): 117. September 1956. PMID 13357304.
  4. SOULIER JP, BADILLET M, HERZOG F (November 1958). "[Therapeutic results in the use of human serum gamma globulins; survey of 6, 602 cases. I. Main indications for their use in infections diseases]". Presse Med (in French). 66 (84): 1881–4. PMID 13623695.
  5. OLIVE BADOSA A (June 1958). "[Gamma globulin in immunological therapeutics: critical analysis]". Rev Clin Esp (in Spanish; Castilian). 69 (6): 361–4. PMID 13591696.
  6. LODODO KS, BAVAEVA SN (February 1959). "[Treatment of whooping cough with placental gamma-globulin]". Pediatriia (in Russian). 14 (2): 38–42. PMID 13645155.
  7. SAXL O (December 1958). "[Treatment of severe infections with gamma globulin]". Z Arztl Fortbild (Jena) (in German). 52 (24): 1030–3. PMID 13648484.
  8. Claman HN, Hartley TF, Merrill D (October 1966). "Hypogammaglobulinemia, primary and secondary: immunoglobulin levels (gamma-G, gamma-A, gamma-M) in one hundred and twenty-five patients". J Allergy. 38 (4): 215–25. PMID 4162597.
  9. Bryant A, Calver NC, Toubi E, Webster AD, Farrant J (August 1990). "Classification of patients with common variable immunodeficiency by B cell secretion of IgM and IgG in response to anti-IgM and interleukin-2". Clin. Immunol. Immunopathol. 56 (2): 239–48. PMID 2165880.
  10. Artac H, Kara R, Gokturk B, Reisli I (November 2013). "Reduced CD19 expression and decreased memory B cell numbers in transient hypogammaglobulinemia of infancy". Clin. Exp. Med. 13 (4): 257–63. doi:10.1007/s10238-012-0200-y. PMID 22820757.
  11. Dorsey MJ, Orange JS (November 2006). "Impaired specific antibody response and increased B-cell population in transient hypogammaglobulinemia of infancy". Ann. Allergy Asthma Immunol. 97 (5): 590–5. doi:10.1016/S1081-1206(10)61085-X. PMID 17165264.
  12. Sneller MC (January 2001). "Common variable immunodeficiency". Am. J. Med. Sci. 321 (1): 42–8. PMID 11202479.
  13. Cunningham-Rundles C, Bodian C (July 1999). "Common variable immunodeficiency: clinical and immunological features of 248 patients". Clin. Immunol. 92 (1): 34–48. doi:10.1006/clim.1999.4725. PMID 10413651.
  14. 14.0 14.1 Conley ME, Howard V (October 2002). "Clinical findings leading to the diagnosis of X-linked agammaglobulinemia". J. Pediatr. 141 (4): 566–71. doi:10.1067/mpd.2002.127711. PMID 12378199.
  15. Ciesielka D (April 2004). "Clinical evaluation and treatment of the adult patient with suspected primary immunodeficiency disease: a case analysis". J Am Acad Nurse Pract. 16 (4): 158–65. PMID 15137474.
  16. Saffran DC, Parolini O, Fitch-Hilgenberg ME, Rawlings DJ, Afar DE, Witte ON, Conley ME (May 1994). "Brief report: a point mutation in the SH2 domain of Bruton's tyrosine kinase in atypical X-linked agammaglobulinemia". N. Engl. J. Med. 330 (21): 1488–91. doi:10.1056/NEJM199405263302104. PMID 8164701.
  17. Kornfeld SJ, Kratz J, Haire RN, Litman GW, Good RA (April 1995). "X-linked agammaglobulinemia presenting as transient hypogammaglobulinemia of infancy". J. Allergy Clin. Immunol. 95 (4): 915–7. PMID 7722175.
  18. Vetrie D, Vorechovský I, Sideras P, Holland J, Davies A, Flinter F, Hammarström L, Kinnon C, Levinsky R, Bobrow M (January 1993). "The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases". Nature. 361 (6409): 226–33. doi:10.1038/361226a0. PMID 8380905.
  19. Buckley RH (November 1992). "Immunodeficiency diseases". JAMA. 268 (20): 2797–806. PMID 1433695.
  20. 20.0 20.1 Robertson J, Elidemir O, Saz EU, Gulen F, Schecter M, McKenzie E, Heinle J, Smith E, Mallory G (September 2009). "Hypogammaglobulinemia: Incidence, risk factors, and outcomes following pediatric lung transplantation". Pediatr Transplant. 13 (6): 754–9. doi:10.1111/j.1399-3046.2008.01067.x. PMID 19067916.
  21. Casulo C, Maragulia J, Zelenetz AD (April 2013). "Incidence of hypogammaglobulinemia in patients receiving rituximab and the use of intravenous immunoglobulin for recurrent infections". Clin Lymphoma Myeloma Leuk. 13 (2): 106–11. doi:10.1016/j.clml.2012.11.011. PMC 4035033. PMID 23276889.
  22. Christou E, Giardino G, Worth A, Ladomenou F (November 2017). "Risk factors predisposing to the development of hypogammaglobulinemia and infections post-Rituximab". Int. Rev. Immunol. 36 (6): 352–359. doi:10.1080/08830185.2017.1346092. PMID 28800262. Vancouver style error: initials (help)
  23. Taneja A, Chhabra A. PMID 28846295. Missing or empty |title= (help)
  24. Parikh SA, Leis JF, Chaffee KG, Call TG, Hanson CA, Ding W, Chanan-Khan AA, Bowen D, Conte M, Schwager S, Slager SL, Van Dyke DL, Jelinek DF, Kay NE, Shanafelt TD (September 2015). "Hypogammaglobulinemia in newly diagnosed chronic lymphocytic leukemia: Natural history, clinical correlates, and outcomes". Cancer. 121 (17): 2883–91. doi:10.1002/cncr.29438. PMC 4545721. PMID 25931291.
  25. Kiliç SS, Tezcan I, Sanal O, Metin A, Ersoy F (December 2000). "Transient hypogammaglobulinemia of infancy: clinical and immunologic features of 40 new cases". Pediatr Int. 42 (6): 647–50. PMID 11192522.
  26. 26.0 26.1 Zaman M, Huissoon A, Buckland M, Patel S, Alachkar H, Edgar JD, Thomas M, Arumugakani G, Baxendale H, Burns S, Williams AP, Jolles S, Herriot R, Sargur RB, Arkwright PD (September 2018). "Clinical & laboratory features of seventy-eight UK patients with Good's syndrome (thymoma & hypogammaglobulinemia)". Clin. Exp. Immunol. doi:10.1111/cei.13216. PMID 30216434.
  27. Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F (September 2016). "Genes associated with common variable immunodeficiency: one diagnosis to rule them all?". J. Med. Genet. 53 (9): 575–90. doi:10.1136/jmedgenet-2015-103690. PMID 27250108.
  28. Clerici M, Villa ML, Mantovani M, Rugarli C (November 1988). "NK cell activity and monocyte dysfunctions in a patient with common variable hypogammaglobulinemia". J Clin Lab Immunol. 27 (3): 143–7. PMID 2977623.


Template:WikiDoc Sources