Ascending cholangitis overview: Difference between revisions
Line 68: | Line 68: | ||
Magnetic resonance cholangiopancreaticography (MRCP) is highly sensitive and accurate in the diagnosis of choledocholithiasis<ref name="pmid10650107">{{cite journal| author=Varghese JC, Liddell RP, Farrell MA, Murray FE, Osborne DH, Lee MJ| title=Diagnostic accuracy of magnetic resonance cholangiopancreatography and ultrasound compared with direct cholangiography in the detection of choledocholithiasis. | journal=Clin Radiol | year= 2000 | volume= 55 | issue= 1 | pages= 25-35 | pmid=10650107 | doi=10.1053/crad.1999.0319 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10650107 }}</ref> and biliary abnormalities in the patients of cholangitis. It is performed in patients with negative ultrasound and CT scan but have a suspicion of acute cholangitis. It is used as a non-invasive tool to localize lesions within the biliary tree. Common MR findings seen in acute cholangitis include increased peri-ductal signal intensity, transient peri-ductal signal difference, abscess, thrombosis and ragged duct<ref name="pmid22088387">{{cite journal| author=Eun HW, Kim JH, Hong SS, Kim YJ| title=Assessment of acute cholangitis by MR imaging. | journal=Eur J Radiol | year= 2012 | volume= 81 | issue= 10 | pages= 2476-80 | pmid=22088387 | doi=10.1016/j.ejrad.2011.10.020 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22088387 }}</ref>. | Magnetic resonance cholangiopancreaticography (MRCP) is highly sensitive and accurate in the diagnosis of choledocholithiasis<ref name="pmid10650107">{{cite journal| author=Varghese JC, Liddell RP, Farrell MA, Murray FE, Osborne DH, Lee MJ| title=Diagnostic accuracy of magnetic resonance cholangiopancreatography and ultrasound compared with direct cholangiography in the detection of choledocholithiasis. | journal=Clin Radiol | year= 2000 | volume= 55 | issue= 1 | pages= 25-35 | pmid=10650107 | doi=10.1053/crad.1999.0319 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=10650107 }}</ref> and biliary abnormalities in the patients of cholangitis. It is performed in patients with negative ultrasound and CT scan but have a suspicion of acute cholangitis. It is used as a non-invasive tool to localize lesions within the biliary tree. Common MR findings seen in acute cholangitis include increased peri-ductal signal intensity, transient peri-ductal signal difference, abscess, thrombosis and ragged duct<ref name="pmid22088387">{{cite journal| author=Eun HW, Kim JH, Hong SS, Kim YJ| title=Assessment of acute cholangitis by MR imaging. | journal=Eur J Radiol | year= 2012 | volume= 81 | issue= 10 | pages= 2476-80 | pmid=22088387 | doi=10.1016/j.ejrad.2011.10.020 | pmc= | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=22088387 }}</ref>. | ||
=== Other | === ERCP === | ||
Other tests in diagnosis of ascending cholangitis include ERCP which is a gold standard test in diagnosis of acute cholangitis. It is used both for diagnostic and therapeutic purposes, however, it is preferred a therapeutic drainage method. ERCP has a higher rate of complications as compared to other endoscopic procedures<ref name="pmid292261072">{{cite journal| author=Mohammad Alizadeh AH| title=Cholangitis: Diagnosis, Treatment and Prognosis. | journal=J Clin Transl Hepatol | year= 2017 | volume= 5 | issue= 4 | pages= 404-413 | pmid=29226107 | doi=10.14218/JCTH.2017.00028 | pmc=5719198 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=29226107 }}</ref> | |||
=== | |||
== Treatment[edit | edit source] == | == Treatment[edit | edit source] == |
Revision as of 15:14, 2 October 2018
https://https://www.youtube.com/watch?v=TuHskzj25X0%7C350}} |
Ascending cholangitis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Ascending cholangitis overview On the Web |
American Roentgen Ray Society Images of Ascending cholangitis overview |
Risk calculators and risk factors for Ascending cholangitis overview |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Anila Hussain, MD [2]
Overview
Ascending cholangitis is a cholangitis caused by bacterial infection. Cholangitis, in turn, is an inflammation of the bile duct.[1]
Historical Perspective
Classification
Pathophysiology
Main factors that are involved in the pathogenesis of ascending cholangitis include obstruction of the biliary tract, increased intraluminal pressure and the infection of bile. Bacterial contamination alone in absence of obstruction does not usually result in cholangitis. However increased pressure within the biliary system (above 20 cmH2O)[2] resulting from obstruction in the bile duct widens spaces between the cells lining the duct, bringing bacterially contaminated bile in contact with the bloodstream while affecting the function of infection prevention macrophages (Kupffer cells) at the same time. In addition, high biliary pressure also spreads the infection into biliary canaliculi, hepatic veins and perihepatic lymph vessels resulting in bacteremia (bacteria in the bloodstream).
Causes
Any condition that leads to stasis or obstruction of bile in the common bile duct can lead to bacterial infection and cholangitis. Most common causes include bile duct stones and benign or malignant strictures. Less common causes include parasitic infection, malignancy, or extrinsic compression by the pancreas. Partial obstruction has a higher rate of infection as compared to complete obstruction[3]
Differentiating Ascending Cholangitis from Other Diseases
Ascending cholangitis must be differentiated from other diseases that cause abdominal pain and fever, such as acute cholecystitis, acute hepatitis, acute pancreatitis, diverticulitis, biliary leakage or stricture, hepatic abscess, duodenal and gastric ulcer, cholestatic liver disease and pancreatic cancer.
Epidemiology and Demographics
Ascending cholangitis is a relatively uncommon disease. It usually occurs following other diseases that lead to biliary infection and stasis. In the Western world, about 15% of all people have gallstones in their gallbladder but the majority are unaware of this and have no symptoms. Over ten years, 15–26% will suffer one or more episodes of biliary colic (abdominal pain due to the passage of gallstones through the bile duct into the digestive tract), and 2–3% will develop complications of obstruction: acute pancreatitis, cholecystitisor acute cholangitis[4]. 0.5-2.4 percent people can develop acute cholangitis following ERCP. Mortality rate of acute cholangitis after the year 2000 was found to be 2700-10,000 per 100,000 people[5]. More commonly seen in Latin-Americans and Native American, However anyone can be affected by the disease. Risk is higher in old age particularly more than 70 years of age[6]. Ascending cholangitis affects men and women equally although the gallstones are more frequently seen in women. Parasitic infections, specifically including the species Ascaris, Opisthorchis, Clonorchis, Fasciola and Echinococcus, are commonly associated with cholangitis outside of the United States.
Risk Factors
Common risk factors in the development of ascending cholangitis include bile duct stones, history of gall stones, biliary strictures, and biliary tract surgery. Less common factors include immunodeffeciency, comorbidities and sclerosing cholangitis. There is a higher risk of acute cholangitis in patients with advanced age (>70) and smoking[7].
Screening
Natural History, Complications, and Prognosis
The severity of ascending cholangitis can range anywhere from mild to life-threatening and can be fatal if left untreated. Complications of acute cholangitis may include sepsis, hepatic abscesses, liver failure, renal failure, pancreatitis as well as postoperative complications like pneumonia, respiratory failure, heart failure, cardiac arrhythmias, cardiac ischemia, gastrointestinal bleeding, bile leaking into peritoneum or abdomen, renal abscess, fistulae, wound infection, wound dehiscence and disseminated intravascular coagulation (DIC)[8]. Acute cholangitis bears a significant risk of death, with the leading cause being irreversible shock with multiple organ failure (which could have multiple possible complications of severe infections). Modern improvements in diagnosis and treatment have led to a reduction in mortality. Prognosis is good for patients who have quick and adequate drainage where there is an improvement in hemodynamic and inflammatory parameters. Prognosis of the disease depends on the severity of the illness. Poor outcomes are seen if urgent surgery is required for drainage
Diagnosis
Diagnostic Study of Choice
History and Symptoms
Symptoms
Ascending Cholangitis, also known as acute cholangitis is a systemic disease caused by the inflammation and infection of the biliary tree most commonly following an obstruction in the biliary tract. It is characterized by a triad (Charcot's Triad) of fever, jaundice and right upper quadrant pain. A pentad (also known as Reynold's pentad) can also be seen in which altered mental status and sepsis are present in addition to usual findings. The typical clinical picture with a triad is present in only 50 to 70 percent of cases[9]
History
Patients with ascending cholangitis may have a positive history of gallstones, common bile duct stones, recent cholecystectomy, endoscopic procedures like cholangiogram or ERCP, previous history of cholangitis, and HIV
Physical Examination
Patients with ascending cholangitis usually appear sick and fatigued. Physical examination of patients is usually remarkable for fever, abdominal tenderness and jaundice. Other findings that may be seen include hypotension, tachycardia and altered mental status in patients with septic shock or elderly
Laboratory Findings
Certain laboratory tests may be helpful in the diagnosis of cholangitis. Some commonly conducted tests include complete blood count, basic metabolic panel, liver function tests, blood culture, and other body fluid cultures. Findings include leucocytosis, elevated liver enzymes, elevated CRP and ESR, abnormal serum electrolytes. Positive bile and blood cultures may also be seen
Electrocardiogram
X-ray
There are no particular x-ray findings associated with ascending cholangitis. However, gallstones may be visible on radiographs in 15-20 percent of the cases depending on the degree of calcification. An ileus can also be seen sometimes.
Ultrasound
A transabdominal ultrasound is the initial test of choice in patients with suspicion of ascending cholangitis to detect common bile duct stones or dilatation[10]. USG is both sensitive and specific in detecting bile duct dilatation yet has a lower sensitivity for detecting bile duct stones. However, bile duct dilatation is not always seen in initial stages of bile duct obstruction making it less reliable[11]. The main finding of ascending cholangitis on an ultrasound is the thickening of the bile duct walls
CT scan
Ct scan can be used to detect the bile duct dilatation with diagnosis of possible causes of cholangitis. Unenhanced and contrast enhanced MDCT scan has moderate sensitivity and specificity for detection of bile duct stones[12]
MRI
Magnetic resonance cholangiopancreaticography (MRCP) is highly sensitive and accurate in the diagnosis of choledocholithiasis[13] and biliary abnormalities in the patients of cholangitis. It is performed in patients with negative ultrasound and CT scan but have a suspicion of acute cholangitis. It is used as a non-invasive tool to localize lesions within the biliary tree. Common MR findings seen in acute cholangitis include increased peri-ductal signal intensity, transient peri-ductal signal difference, abscess, thrombosis and ragged duct[14].
ERCP
Other tests in diagnosis of ascending cholangitis include ERCP which is a gold standard test in diagnosis of acute cholangitis. It is used both for diagnostic and therapeutic purposes, however, it is preferred a therapeutic drainage method. ERCP has a higher rate of complications as compared to other endoscopic procedures[15]
Treatment[edit | edit source]
Medical Therapy
Interventions
Surgery
Primary Prevention[
Secondary Prevention
References
- ↑ gpnotebook
- ↑ Huang T, Bass JA, Williams RD (1969). "The significance of biliary pressure in cholangitis". Arch Surg. 98 (5): 629–632. PMID 4888283. Unknown parameter
|month=
ignored (help) - ↑ Kimura Y, Takada T, Kawarada Y, Nimura Y, Hirata K, Sekimoto M; et al. (2007). "Definitions, pathophysiology, and epidemiology of acute cholangitis and cholecystitis: Tokyo Guidelines". J Hepatobiliary Pancreat Surg. 14 (1): 15–26. doi:10.1007/s00534-006-1152-y. PMC 2784509. PMID 17252293.
- ↑ Bateson MC (1999). "Fortnightly review: gallbladder disease". BMJ. 318 (7200): 1745–8. PMC 1116086. PMID 10381713.
- ↑ Kimura Y, Takada T, Strasberg SM, Pitt HA, Gouma DJ, Garden OJ; et al. (2013). "TG13 current terminology, etiology, and epidemiology of acute cholangitis and cholecystitis". J Hepatobiliary Pancreat Sci. 20 (1): 8–23. doi:10.1007/s00534-012-0564-0. PMID 23307004.
- ↑ Dageforde DA, Genovely HC, Goodin RR, Allen RD (1987). "Emergency percutaneous transluminal coronary angioplasty in acute myocardial infarction". J Ky Med Assoc. 85 (7): 368–72. PMID 2956349.
- ↑ Yeom DH, Oh HJ, Son YW, Kim TH (2010). "What are the risk factors for acute suppurative cholangitis caused by common bile duct stones?". Gut Liver. 4 (3): 363–7. doi:10.5009/gnl.2010.4.3.363. PMC 2956349. PMID 20981214.
- ↑ Lai EC, Tam PC, Paterson IA, Ng MM, Fan ST, Choi TK; et al. (1990). "Emergency surgery for severe acute cholangitis. The high-risk patients". Ann Surg. 211 (1): 55–9. PMC 1357893. PMID 2294844.
- ↑ Saik RP, Greenburg AG, Farris JM, Peskin GW (1975). "Spectrum of cholangitis". Am J Surg. 130 (2): 143–50. PMID 1098507.
- ↑ Kinney TP (2007). "Management of ascending cholangitis". Gastrointest Endosc Clin N Am. 17 (2): 289–306, vi. doi:10.1016/j.giec.2007.03.006. PMID 17556149.
- ↑ Gallix BP, Aufort S, Pierredon MA, Garibaldi F, Bruel JM (2006). "[Acute cholangitis: imaging diagnosis and management]". J Radiol. 87 (4 Pt 2): 430–40. PMID 16691174.
- ↑ Anderson SW, Lucey BC, Varghese JC, Soto JA (2006). "Accuracy of MDCT in the diagnosis of choledocholithiasis". AJR Am J Roentgenol. 187 (1): 174–80. doi:10.2214/AJR.05.0459. PMID 16794173.
- ↑ Varghese JC, Liddell RP, Farrell MA, Murray FE, Osborne DH, Lee MJ (2000). "Diagnostic accuracy of magnetic resonance cholangiopancreatography and ultrasound compared with direct cholangiography in the detection of choledocholithiasis". Clin Radiol. 55 (1): 25–35. doi:10.1053/crad.1999.0319. PMID 10650107.
- ↑ Eun HW, Kim JH, Hong SS, Kim YJ (2012). "Assessment of acute cholangitis by MR imaging". Eur J Radiol. 81 (10): 2476–80. doi:10.1016/j.ejrad.2011.10.020. PMID 22088387.
- ↑ Mohammad Alizadeh AH (2017). "Cholangitis: Diagnosis, Treatment and Prognosis". J Clin Transl Hepatol. 5 (4): 404–413. doi:10.14218/JCTH.2017.00028. PMC 5719198. PMID 29226107.