Congenital defects of phagocytes: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 357: | Line 357: | ||
*Autosomal recessive(AR) transmission. | *Autosomal recessive(AR) transmission. | ||
*It is caused by homozygous or compound heterozygous mutation in the cystic fibrosis conductance regulator gene (CFTR) on chromosome 7. | *It is caused by homozygous or compound heterozygous mutation in the cystic fibrosis conductance regulator gene (CFTR) on chromosome 7. | ||
==References== | ==References== |
Revision as of 20:47, 16 October 2018
Immunodeficiency Main Page |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Anmol Pitliya, M.B.B.S. M.D.[3]
Overview
Classification
Congenital defects of Phagocyte | |||||||||||||||
Congenital defects of phagocyte number | Congenital defects of phagocyte function | ||||||||||||||
Congeital Defects of Phagocyte Number
Congenital defects of phagocyte number | |||||||||||||||||||||||||||
Syndrome associated | No syndrome associated | ||||||||||||||||||||||||||
Shwachman-Diamond syndrome | Elastase deficiency (SCN1) | ||||||||||||||||||||||||||
G6PC3 deficiency (SCN4) | HAX1 deficiency (Kostmann Disease) (SCN3) | ||||||||||||||||||||||||||
Glycogen storage disease type 1b | GFI 1 deficiency (SCN2) | ||||||||||||||||||||||||||
Cohen syndrome | X-linked neutropenia/myelodysplasia WAS GOF | ||||||||||||||||||||||||||
Barth Syndrome | G-CSF receptor deficiency | ||||||||||||||||||||||||||
Clericuzio syndrome (poikiloderma with neutropenia) | Neutropenia with combined immune deficiency | ||||||||||||||||||||||||||
VPS45 deficiency(SCN5) | |||||||||||||||||||||||||||
P14/LAMTOR2 deficiency | |||||||||||||||||||||||||||
JAGN1 deficiency | |||||||||||||||||||||||||||
methylglutacoic aciduria | |||||||||||||||||||||||||||
SMARCD2 deficiency | |||||||||||||||||||||||||||
WDR1 deficiency | |||||||||||||||||||||||||||
HYOU1 deficiency | |||||||||||||||||||||||||||
Congenital defects of phagocyte function
Congenital defects of phagocyte function | |||||||||||||||||||||||||||||||||||
Syndrome associated | No Syndrome associated;DHR assay(or NBT test)? | ||||||||||||||||||||||||||||||||||
Cystic Fibrosis | Normal | Abnormal | |||||||||||||||||||||||||||||||||
Papillion-Lefèvre | GATA2 def (MonoMac syndrome | CGD | |||||||||||||||||||||||||||||||||
Localized juvenile periodontitis | Specific granule deficiency | Rac 2 deficiency | |||||||||||||||||||||||||||||||||
B-Actin | Pulmonary alveolar proteinosis | G6PD def Class 1 | |||||||||||||||||||||||||||||||||
Leukocyte adhesion deficiency | |||||||||||||||||||||||||||||||||||
Shwachman-Diamond Syndrome
- Autosomal Recessive(AR) transmission.
- It is caused by compound heterozygous or homozygous mutations in the SBDS gene on chromosome 7.
- Patients present with exocrine pancreatic dysfunction, bony metaphyseal dysostosis, and pancytopenias.[1]
- CT scan can be useful in the diagnosis.[2]
G6PC3 deficiency
- Autosomal recessive(AR) transmission.
- It is caused by homozygous mutation in the G6PC3 gene on chromosome 17.
- Patients present with congenital neutropenia, cardiac abnormalities, inner ear deafness, neonatal sepsis and a prominent superficial venous pattern.[3]
Glycogen storage disease type 1b
- Autosomal recessive(AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the G6PT1 gene which encodes glucose-6-phosphate translocase, on chromosome 11.
- Patients present with short stature, hepatomegaly, hypertension, eruptive xanthoma and hyperlipidemia.[4]
Cohen Syndrome
- Autosomal recessive(AR) transmission.
- It is caused by homozygous or compound heterozygous mutations in the COH1 gene on chromosome 8.
- Patients present with nonprogressive psychomotor retardation, motor clumsiness, microcephaly, high-arched eyelids, short philtrum, thick hair, low hairline, hypotonia, hyperextensibility of the joints, retinochoroidal dystrophy, myopia, and granulocytopenia.[5]
Barth Syndrome
- X-linked recessive(XLR) transmission.
- It is caused by mutation in the tafazzin gene (TAZ) on chromosome X.
- Patients present with dilated cardiomyopathy, a predominantly proximal skeletal myopathy, growth retardation, organic aciduria, and neutropenia.[6]
Clericuzio syndrome (poikiloderma with neutropenia)
- Autosomal recessive(AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the USB1 gene on chromosome 16.
- Patients present with a gradual, centripetally spreading, papular erythematous rash on the limbs during the first year of life. Neutropenia may also be present.[7]
VPS45 deficiency (SCN5)
- Autosomal recessive(AR) transmission.
- It is caused by homozygous mutation in the VPS45 gene on chromosome 1.
- Patients present in childhood with poor weight gain, hepatosplenomegaly, severe infections, hypergammaglobulinemia, nephromegaly due to extramedullary hematopoiesis, and bone marrow fibrosis.[8]
P14/LAMTOR2 deficiency
- Autosomal recessive(AR) transmission.
- Patients present with short stature, hypopigmeted skin, coarse facial features and recurrent bronchopulmonary infections.[9]
JAGN1 deficiency
- Autosomal recessive(AR) transmission.
- Patients present with aberrant myeloid cell homeostasis and congenital neutropenia.[10]
3-Methylglutaconic aciduria
- Autosomal recessive(AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the CLPB gene on chromosome 11, which leads to by increased levels of 3-methylglutaconic acid (3-MGA) associated with neurologic deterioration and neutropenia.
- Patients present with delayed psychomotor development, congenital neutropenia, brain atrophy, microcephaly, movement disorders and cataracts.[11]
SMARCD2 deficiency
- Autosomal recessive(AR) transmission.
- It is caused by a mutation in the SMARCD2 gene on chromosome 17.[12]
- Patients present with myelodysplasia, bone defects and developmental abnormalities.
WDR1 deficiency
- Autosomal recessive(AR) transmission.
- It is caused by mutation in the WDR1 gene on chromosome 4.[13]
- Patients present with recurrent infections, mild neutropenia, impaired wound healing and severe stomatitis with oral stenosis.[14]
HYOU1 deficiency
- Autosomal recessive (AR) transmission.
- It is caused by mutation in the HYOU1 gene on chromosome 11.
- Patients present with hypoglycemia and infections.
Elastase deficiency (SCN1)
- Autosomal dominant (AD) transmission.
- It is caused by a mutation in the ELANE gene on chromosome 19.
- Patients present with cyclic neutropenia starting in childhood with a cycle of approximately 21 days. Recurrent infections with fever are also common features.[15]
- The mainstay of treatment is giving granulocyte-colony stimulating factor (GCSF or CSF3)[16]
HAX1 deficiency (Kostmann Disease) (SCN3)
- Autosomal recessive (AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the HAX1 gene on chromosome 1.
- Patients present with recurrent bacterial infections and neurologic abnormalities like psychomotor retardation and seizures. Patients are also at increased risk of developing leukemia and myelodysplastic syndrome.[17]
GFI 1 deficiency
- Autosomal dominant (AD) transmission.
- B and T cell lymphopenia is the major feature of this disease.
X-linked neutropenia/myelodysplasia WAS GOF
- X-linked recessive transmission.
- Patients present with myeloid maturation arrest and monocytopenia.
G-CSF receptor deficiency
- Autosomal recessive (AR) transmission.
- It is caused by a mutation on CSF3R gene on chromosome 1.
Neutropenia with combined immune deficiency
- Autosomal recessive (AR) transmission.
- It is caused by a mutation on MKL1 gene on chromosome 22.[18]
- Patients present with lymphopenia and thrombocytopenia.
Cystic fibrosis
- Autosomal recessive(AR) transmission.
- It is caused by homozygous or compound heterozygous mutation in the cystic fibrosis conductance regulator gene (CFTR) on chromosome 7.
References
- ↑ Yigal Dror & Melvin H. Freedman (2002). "Shwachman-diamond syndrome". British journal of haematology. 118 (3): 701–713. PMID 12181037. Unknown parameter
|month=
ignored (help) - ↑ N. B. Genieser, E. R. Halac, M. A. Greco & H. M. Richards (1982). "Shwachman-Bodian syndrome". Journal of computer assisted tomography. 6 (6): 1191–1192. PMID 7174939. Unknown parameter
|month=
ignored (help) - ↑ Kaan Boztug, Giridharan Appaswamy, Angel Ashikov, Alejandro A. Schaffer, Ulrich Salzer, Jana Diestelhorst, Manuela Germeshausen, Gudrun Brandes, Jacqueline Lee-Gossler, Fatih Noyan, Anna-Katherina Gatzke, Milen Minkov, Johann Greil, Christian Kratz, Theoni Petropoulou, Isabelle Pellier, Christine Bellanne-Chantelot, Nima Rezaei, Kirsten Monkemoller, Noha Irani-Hakimeh, Hans Bakker, Rita Gerardy-Schahn, Cornelia Zeidler, Bodo Grimbacher, Karl Welte & Christoph Klein (2009). "A syndrome with congenital neutropenia and mutations in G6PC3". The New England journal of medicine. 360 (1): 32–43. doi:10.1056/NEJMoa0805051. PMID 19118303. Unknown parameter
|month=
ignored (help) - ↑ T. Kuzuya, A. Matsuda, S. Yoshida, K. Narisawa, K. Tada, T. Saito & M. Matsushita (1983). "An adult case of type Ib glycogen-storage disease. Enzymatic and histochemical studies". The New England journal of medicine. 308 (10): 566–569. doi:10.1056/NEJM198303103081004. PMID 6298622. Unknown parameter
|month=
ignored (help) - ↑ S. Kivitie-Kallio & R. Norio (2001). "Cohen syndrome: essential features, natural history, and heterogeneity". American journal of medical genetics. 102 (2): 125–135. PMID 11477603. Unknown parameter
|month=
ignored (help) - ↑ P. G. Barth, H. R. Scholte, J. A. Berden, J. M. Van der Klei-Van Moorsel, I. E. Luyt-Houwen, E. T. Van 't Veer-Korthof, J. J. Van der Harten & M. A. Sobotka-Plojhar (1983). "An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes". Journal of the neurological sciences. 62 (1–3): 327–355. PMID 6142097. Unknown parameter
|month=
ignored (help) - ↑ R. P. Erickson (1999). "Southwestern Athabaskan (Navajo and Apache) genetic diseases". Genetics in medicine : official journal of the American College of Medical Genetics. 1 (4): 151–157. doi:10.1097/00125817-199905000-00007. PMID 11258351. Unknown parameter
|month=
ignored (help) - ↑ Thierry Vilboux, Atar Lev, May Christine V. Malicdan, Amos J. Simon, Paivi Jarvinen, Tomas Racek, Jacek Puchalka, Raman Sood, Blake Carrington, Kevin Bishop, James Mullikin, Marjan Huizing, Ben Zion Garty, Eran Eyal, Baruch Wolach, Ronit Gavrieli, Amos Toren, Michalle Soudack, Osama M. Atawneh, Tatiana Babushkin, Ginette Schiby, Andrew Cullinane, Camila Avivi, Sylvie Polak-Charcon, Iris Barshack, Ninette Amariglio, Gideon Rechavi, Jutte van der Werff ten Bosch, Yair Anikster, Christoph Klein, William A. Gahl & Raz Somech (2013). "A congenital neutrophil defect syndrome associated with mutations in VPS45". The New England journal of medicine. 369 (1): 54–65. doi:10.1056/NEJMoa1301296. PMID 23738510. Unknown parameter
|month=
ignored (help) - ↑ Georg Bohn, Anna Allroth, Gudrun Brandes, Jens Thiel, Erik Glocker, Alejandro A. Schaffer, Chozhavendan Rathinam, Nicole Taub, David Teis, Cornelia Zeidler, Ricardo A. Dewey, Robert Geffers, Jan Buer, Lukas A. Huber, Karl Welte, Bodo Grimbacher & Christoph Klein (2007). "A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14". Nature medicine. 13 (1): 38–45. doi:10.1038/nm1528. PMID 17195838. Unknown parameter
|month=
ignored (help) - ↑ Kaan Boztug, Paivi M. Jarvinen, Elisabeth Salzer, Tomas Racek, Sebastian Monch, Wojciech Garncarz, E. Michael Gertz, Alejandro A. Schaffer, Aristotelis Antonopoulos, Stuart M. Haslam, Lena Schieck, Jacek Puchalka, Jana Diestelhorst, Giridharan Appaswamy, Brigitte Lescoeur, Roberto Giambruno, Johannes W. Bigenzahn, Ulrich Elling, Dietmar Pfeifer, Cecilia Dominguez Conde, Michael H. Albert, Karl Welte, Gudrun Brandes, Roya Sherkat, Jutte van der Werff Ten Bosch, Nima Rezaei, Amos Etzioni, Christine Bellanne-Chantelot, Giulio Superti-Furga, Josef M. Penninger, Keiryn L. Bennett, Julia von Blume, Anne Dell, Jean Donadieu & Christoph Klein (2014). "JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia". Nature genetics. 46 (9): 1021–1027. doi:10.1038/ng.3069. PMID 25129144. Unknown parameter
|month=
ignored (help) - ↑ Saskia B. Wortmann, Szymon Zietkiewicz, Maria Kousi, Radek Szklarczyk, Tobias B. Haack, Soren W. Gersting, Ania C. Muntau, Aleksandar Rakovic, G. Herma Renkema, Richard J. Rodenburg, Tim M. Strom, Thomas Meitinger, M. Estela Rubio-Gozalbo, Elzbieta Chrusciel, Felix Distelmaier, Christelle Golzio, Joop H. Jansen, Clara van Karnebeek, Yolanda Lillquist, Thomas Lucke, Katrin Ounap, Riina Zordania, Joy Yaplito-Lee, Hans van Bokhoven, Johannes N. Spelbrink, Frederic M. Vaz, Mia Pras-Raves, Rafal Ploski, Ewa Pronicka, Christine Klein, Michel A. A. P. Willemsen, Arjan P. M. de Brouwer, Holger Prokisch, Nicholas Katsanis & Ron A. Wevers (2015). "CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder". American journal of human genetics. 96 (2): 245–257. doi:10.1016/j.ajhg.2014.12.013. PMID 25597510. Unknown parameter
|month=
ignored (help) - ↑ H. Z. Ring, V. Vameghi-Meyers, W. Wang, G. R. Crabtree & U. Francke (1998). "Five SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin (SMARC) genes are dispersed in the human genome". Genomics. 51 (1): 140–143. doi:10.1006/geno.1998.5343. PMID 9693044. Unknown parameter
|month=
ignored (help) - ↑ H. J. Adler, R. S. Winnicki, T. W. Gong & M. I. Lomax (1999). "A gene upregulated in the acoustically damaged chick basilar papilla encodes a novel WD40 repeat protein". Genomics. 56 (1): 59–69. doi:10.1006/geno.1998.5672. PMID 10036186. Unknown parameter
|month=
ignored (help) - ↑ Douglas B. Kuhns, Danielle L. Fink, Uimook Choi, Colin Sweeney, Karen Lau, Debra Long Priel, Dara Riva, Laura Mendez, Gulbu Uzel, Alexandra F. Freeman, Kenneth N. Olivier, Victoria L. Anderson, Robin Currens, Vanessa Mackley, Allison Kang, Mehdi Al-Adeli, Emily Mace, Jordan S. Orange, Elizabeth Kang, Stephen J. Lockett, De Chen, Peter J. Steinbach, Amy P. Hsu, Kol A. Zarember, Harry L. Malech, John I. Gallin & Steven M. Holland (2016). "Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency". Blood. 128 (17): 2135–2143. doi:10.1182/blood-2016-03-706028. PMID 27557945. Unknown parameter
|month=
ignored (help) - ↑ H. W. Peng, C. F. Chou & D. C. Liang (2000). "Hereditary cyclic neutropenia in the male members of a Chinese family with inverted Y chromosome". British journal of haematology. 110 (2): 438–440. PMID 10971405. Unknown parameter
|month=
ignored (help) - ↑ S. E. Palmer, K. Stephens & D. C. Dale (1996). "Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis". American journal of medical genetics. 66 (4): 413–422. doi:10.1002/(SICI)1096-8628(19961230)66:4<413::AID-AJMG5>3.0.CO;2-L. PMID 8989458. Unknown parameter
|month=
ignored (help) - ↑ Manuela Germeshausen, Magda Grudzien, Cornelia Zeidler, Hengameh Abdollahpour, Sevgi Yetgin, Nima Rezaei, Matthias Ballmaier, Bodo Grimbacher, Karl Welte & Christoph Klein (2008). "Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations". Blood. 111 (10): 4954–4957. doi:10.1182/blood-2007-11-120667. PMID 18337561. Unknown parameter
|month=
ignored (help) - ↑ T. Nagase, R. Kikuno, K. I. Ishikawa, M. Hirosawa & O. Ohara (2000). "Prediction of the coding sequences of unidentified human genes. XVI. The complete sequences of 150 new cDNA clones from brain which code for large proteins in vitro". DNA research : an international journal for rapid publication of reports on genes and genomes. 7 (1): 65–73. PMID 10718198. Unknown parameter
|month=
ignored (help)