Malaria historical perspective: Difference between revisions

Jump to navigation Jump to search
Anmol Pitliya (talk | contribs)
No edit summary
Marjan Khan (talk | contribs)
Line 14: Line 14:


===Discovery and Differentiation of the Malaria Parasite===
===Discovery and Differentiation of the Malaria Parasite===
Malaria was originally believed to be an airborne noxious element or miasma from swamps. It was not until 1880, when Charles Louis Alphone Laveran, a French military physician, discovered an infectious parasite when he microscopically examined blood smears of 44 malaria patients and “noticed among the red corpuscles elements that seemed to be parasites”.<ref name="pmid6750753">{{cite journal| author=Laveran CL| title=Classics in infectious diseases: A newly discovered parasite in the blood of patients suffering from malaria. Parasitic etiology of attacks of malaria: Charles Louis Alphonse Laveran (1845-1922). | journal=Rev Infect Dis | year= 1982 | volume= 4 | issue= 4 | pages= 908-11 | pmid=6750753 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6750753  }} </ref> He was eventually rewarded the Nobel Prize for Physiology or Medicine in 1907 for his overall research on malaria.<ref name="pmid20205846">{{cite journal| author=Cox FE| title=History of the discovery of the malaria parasites and their vectors. | journal=Parasit Vectors | year= 2010 | volume= 3 | issue= 1 | pages= 5 | pmid=20205846 | doi=10.1186/1756-3305-3-5 | pmc=PMC2825508 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20205846  }} </ref> In 1883, it was hypothesized that malarial transmission is by mosquito.<ref name="pmid81525">{{cite journal| author=Dutta HM, Dutt AK| title=Malarial ecology: a global perspective. | journal=Soc Sci Med | year= 1978 | volume= 12 | issue= 2D | pages= 69-84 | pmid=81525 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=81525  }} </ref> Fourteen years later in 1897, Sir Ronald Ross, an Indian-born British bacteriologist, isolated malarial oocysts in Anopheles mosquitos and was able to prove that the culcine mosquito is the malarial vector for avian malaria.<ref name="pmid20756775">{{cite journal| author=Ross R| title=Observations on a Condition Necessary to the Transformation of the Malaria Crescent. | journal=Br Med J | year= 1897 | volume= 1 | issue= 1883 | pages= 251-5 | pmid=20756775 | doi= | pmc=PMC2432879 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20756775  }} </ref> Consequently, he also won the Nobel Prize for Physiology or Medicine in 1902 for his research on malarial transmission and life cycle.<ref name="pmid81525">{{cite journal| author=Dutta HM, Dutt AK| title=Malarial ecology: a global perspective. | journal=Soc Sci Med | year= 1978 | volume= 12 | issue= 2D | pages= 69-84 | pmid=81525 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=81525  }} </ref> Ross’s discovery was then followed by a similar discovery one year later for Anopheles mosquito and human malaria by Italian researchers Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi, and Ettore Marchiafava.<ref name="pmid20205846">{{cite journal| author=Cox FE| title=History of the discovery of the malaria parasites and their vectors. | journal=Parasit Vectors | year= 2010 | volume= 3 | issue= 1 | pages= 5 | pmid=20205846 | doi=10.1186/1756-3305-3-5 | pmc=PMC2825508 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20205846  }} </ref>  
*Malaria was originally believed to be an airborne noxious element or miasma from swamps. It was not until 1880, when Charles Louis Alphone Laveran, a French military physician, discovered an infectious parasite when he microscopically examined blood smears of 44 malaria patients and “noticed among the red corpuscles elements that seemed to be parasites”.<ref name="pmid6750753">{{cite journal| author=Laveran CL| title=Classics in infectious diseases: A newly discovered parasite in the blood of patients suffering from malaria. Parasitic etiology of attacks of malaria: Charles Louis Alphonse Laveran (1845-1922). | journal=Rev Infect Dis | year= 1982 | volume= 4 | issue= 4 | pages= 908-11 | pmid=6750753 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=6750753  }} </ref>  
*He was eventually rewarded the Nobel Prize for Physiology or Medicine in 1907 for his overall research on malaria.<ref name="pmid20205846">{{cite journal| author=Cox FE| title=History of the discovery of the malaria parasites and their vectors. | journal=Parasit Vectors | year= 2010 | volume= 3 | issue= 1 | pages= 5 | pmid=20205846 | doi=10.1186/1756-3305-3-5 | pmc=PMC2825508 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20205846  }} </ref>  
*In 1883, it was hypothesized that malarial transmission is by mosquito.<ref name="pmid81525">{{cite journal| author=Dutta HM, Dutt AK| title=Malarial ecology: a global perspective. | journal=Soc Sci Med | year= 1978 | volume= 12 | issue= 2D | pages= 69-84 | pmid=81525 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=81525  }} </ref>  
*Fourteen years later in 1897, Sir Ronald Ross, an Indian-born British bacteriologist, isolated malarial oocysts in Anopheles mosquitos and was able to prove that the culcine mosquito is the malarial vector for avian malaria.<ref name="pmid20756775">{{cite journal| author=Ross R| title=Observations on a Condition Necessary to the Transformation of the Malaria Crescent. | journal=Br Med J | year= 1897 | volume= 1 | issue= 1883 | pages= 251-5 | pmid=20756775 | doi= | pmc=PMC2432879 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20756775  }} </ref> Consequently, he also won the Nobel Prize for Physiology or Medicine in 1902 for his research on malarial transmission and life cycle.<ref name="pmid81525">{{cite journal| author=Dutta HM, Dutt AK| title=Malarial ecology: a global perspective. | journal=Soc Sci Med | year= 1978 | volume= 12 | issue= 2D | pages= 69-84 | pmid=81525 | doi= | pmc= | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=81525  }} </ref>  
*Ross’s discovery was then followed by a similar discovery one year later for Anopheles mosquito and human malaria by Italian researchers Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi, and Ettore Marchiafava.<ref name="pmid20205846">{{cite journal| author=Cox FE| title=History of the discovery of the malaria parasites and their vectors. | journal=Parasit Vectors | year= 2010 | volume= 3 | issue= 1 | pages= 5 | pmid=20205846 | doi=10.1186/1756-3305-3-5 | pmc=PMC2825508 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20205846  }} </ref>


===Synthetic Quinine===
===Synthetic Quinine===

Revision as of 13:25, 30 October 2018

Malaria Microchapters

Home

Patient Information

Overview

Historical perspective

Classification

Pathophysiology

Causes

Differentiating Malaria from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Xray

Ultrasound

CT scan

MRI

Other Diagnostic Studies

Treatment

Medical Therapy

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case studies

Case #1

Malaria historical perspective On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Malaria historical perspective

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Malaria historical perspective

CDC on Malaria historical perspective

Malaria historical perspective in the news

Blogs on Malaria historical perspective

Directions to Hospitals Treating Malaria

Risk calculators and risk factors for Malaria historical perspective

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2]; Associate Editor(s)-In-Chief: Yazan Daaboul, Serge Korjian, Alison Leibowitz [3]

Overview

The symptoms of malaria, one of the oldest known infections, were initially believed to be caused by noxious elements.[1] In 1880 Charles Louis Alphone Laveran discovered the Plasmodium parasite in blood smears of patients with malaria.[2] The role of mosquitos in the transmission of malaria to humans was discovered a few years later. The entire life cycle of the Plasmodium parasite remained enigmatic until 1982.[3] Although malaria has historically been treated using quinine, an alkaloid derived from barks of cinchona, the first synthetic quinine was produced in 1948.[4][5] In 2014, the first candidate for anti-malarial vaccine was developed.

Historical Perspective

Discovery

Ancient History

  • Malaria is one of the earliest discovered global diseases, which continues to infect hundreds of million people worldwide. Frequently, it has been regarded as the most significant disease over the past three thousand years. Since antiquity, the malarial syndrome has been described in ancient China, India, Greece, and Egypt.[1]
  • Hippocrates, Homer, and other Greek and Roman physicians often referred to malaria as the “marsh fever”, “intermittent fever”, and “ague”.[1][6]
  • The name “malaria” was only coined in the mid-eighteenth century, derived from two Latin words that collectively translate to “bad air”.[7]

Discovery and Differentiation of the Malaria Parasite

  • Malaria was originally believed to be an airborne noxious element or miasma from swamps. It was not until 1880, when Charles Louis Alphone Laveran, a French military physician, discovered an infectious parasite when he microscopically examined blood smears of 44 malaria patients and “noticed among the red corpuscles elements that seemed to be parasites”.[2]
  • He was eventually rewarded the Nobel Prize for Physiology or Medicine in 1907 for his overall research on malaria.[1]
  • In 1883, it was hypothesized that malarial transmission is by mosquito.[7]
  • Fourteen years later in 1897, Sir Ronald Ross, an Indian-born British bacteriologist, isolated malarial oocysts in Anopheles mosquitos and was able to prove that the culcine mosquito is the malarial vector for avian malaria.[8] Consequently, he also won the Nobel Prize for Physiology or Medicine in 1902 for his research on malarial transmission and life cycle.[7]
  • Ross’s discovery was then followed by a similar discovery one year later for Anopheles mosquito and human malaria by Italian researchers Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi, and Ettore Marchiafava.[1]

Synthetic Quinine

Robert Woodward and William vonEggers Doering developed the total synthesis of quinine in 1944, following Paul Rabe and Karl Kindler’s report on converting d-quinotoxine into quinine in 1918.[4][5] Originally, quinine is an alkaloid derived from barks of cinchona and Remijia tree species that were proven to be effective in the treatment of malaria. With Woodward and Doering’s discovery of the first artificial quinine, the first synthetic pharmacological agent to treat malaria was produced.[5]

Malarial Life Cycle

In 1948, Henry Shortt and Cyril Garnham unveiled the cryptic tissue phase, demonstrating that malaria first develops in the liver and then enters the blood stream.[9] In 1982, Wojciech Krotoski discovered that malaria exists in a dormant exoerythrocytic stage in the liver, which explains the long latency period observed between infection and the appearance in the bloodstream in certain strains.[3]

Partial Eradication of Malaria

Upon the understanding of malaria's mode of transmission and mechanisms of disease, mosquito control and prompt diagnosis and treatment, allowed most European countries to eliminate malaria before the Second World War.[10] In 1955, the Global Malaria Eradication Program was established in an effort to control and eliminate malaria, as well as to reduce the malarial burden in regions of moderate prevalence outside tropical Africa. The financial coverage and expertise to fight malaria further expanded to include global efforts, such as "Global Fund to Fight HIV, TB, and Malaria", "U.S. President's Malaria Initiative", and "World Bank's Booster Program".[10] In 2008, the World Health Organization (WHO) announced a multibillion-dollar initiative to eradicate malaria, partially funded by international donors.[11]

In 2005, with a grant funding from the Bill and Melinda Gates Foundation, PATH Malaria Vaccine Initiative (MVI), a non-profit organization, collaborated with Glaxosmithkline, to develop an anti-malarial vaccine. The vaccine has been administered, alongside other infant vaccines, through the Expanded Program on Immunization (EPI). In 2011, the first co-primary end point from the phase 3 trial of RTS,S/AS01 malaria vaccine was published, followed by a second co-primary end point in 2012.[12] The vaccine was used to protect against uncomplicated and severe malaria in infants. In July 2014, Glaxosmithkline applied for approval to be the world's first anti-malarial vaccine. Other malarial vaccines are currently being developed, but still require further validation of their clinical efficacy.

Malaria in the United States

  • Malaria was mostly eliminated from the United States in the early 1950s.[13]
  • Between 1957 and 2011, in the United States, 63 outbreaks of locally transmitted mosquito-borne malaria occurred. In such outbreaks, local mosquitoes become infected by biting individuals carrying malaria parasites (acquired in endemic areas), subsequently transmitting malaria to local residents.[13]
  • Between 1963 and 2011, 97 cases of transfusion-transmitted malaria were reported in the United States. Approximately two thirds of these cases could have been prevented if the implicated donors had been deferred according to established guidelines.[13]

References

  1. 1.0 1.1 1.2 1.3 1.4 Cox FE (2010). "History of the discovery of the malaria parasites and their vectors". Parasit Vectors. 3 (1): 5. doi:10.1186/1756-3305-3-5. PMC 2825508. PMID 20205846.
  2. 2.0 2.1 Laveran CL (1982). "Classics in infectious diseases: A newly discovered parasite in the blood of patients suffering from malaria. Parasitic etiology of attacks of malaria: Charles Louis Alphonse Laveran (1845-1922)". Rev Infect Dis. 4 (4): 908–11. PMID 6750753.
  3. 3.0 3.1 Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW; et al. (1982). "Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection". Am J Trop Med Hyg. 31 (6): 1291–3. PMID 6816080.
  4. 4.0 4.1 Seeman JI (2007). "The Woodward-Doering/Rabe-Kindler total synthesis of quinine: setting the record straight". Angew Chem Int Ed Engl. 46 (9): 1378–413. doi:10.1002/anie.200601551. PMID 17294412.
  5. 5.0 5.1 5.2 Kaufman TS, Rúveda EA (2005). "The quest for quinine: those who won the battles and those who won the war". Angew Chem Int Ed Engl. 44 (6): 854–85. doi:10.1002/anie.200400663. PMID 15669029.
  6. Bruce-Chwatt LJ (1981). "Alphonse Laveran's discovery 100 years ago and today's global fight against malaria". J R Soc Med. 74 (7): 531–6. PMC 1439072. PMID 7021827.
  7. 7.0 7.1 7.2 Dutta HM, Dutt AK (1978). "Malarial ecology: a global perspective". Soc Sci Med. 12 (2D): 69–84. PMID 81525.
  8. Ross R (1897). "Observations on a Condition Necessary to the Transformation of the Malaria Crescent". Br Med J. 1 (1883): 251–5. PMC 2432879. PMID 20756775.
  9. SHORTT HE, GARNHAM PC (1948). "Pre-erythrocytic stage in mammalian malaria parasites". Nature. 161 (4082): 126. PMID 18900752.
  10. 10.0 10.1 Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH (2009). "From malaria control to eradication: The WHO perspective". Trop Med Int Health. 14 (7): 802–9. doi:10.1111/j.1365-3156.2009.02287.x. PMID 19497083.
  11. Okie S (2008). "A new attack on malaria". N Engl J Med. 358 (23): 2425–8. doi:10.1056/NEJMp0803483. PMID 18525039.
  12. RTS,S Clinical Trials Partnership. Agnandji ST, Lell B, Fernandes JF, Abossolo BP, Methogo BG; et al. (2012). "A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants". N Engl J Med. 367 (24): 2284–95. doi:10.1056/NEJMoa1208394. PMID 23136909.
  13. 13.0 13.1 13.2 Malaria Facts. CDC.gov accessed on 07/24/2014 [1]


Template:WikiDoc Sources